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METHODS OF STATISTICAL SIMULATION OF RANDOM FIELDS  

ON THE PLANE BY THE AIRCRAFT MAGNETOMETRY DATA 
 
(Рекомендовано членом редакційної колегії д-ром фіз.мат. наук, проф. Б. П. Масловим) 
 
Universal methods of statistical simulation (Monte Carlo methods) of geophysical data for generating random processes and fields 

on 2-D grids of required detail and regularity have been developed. Most of the geophysical research results are submitted in digital 
form, which accuracy depends on various random effects (including equipment measurement error). The map accuracy problem occurs 
when the data cannot be obtained with a given detail in some areas. Methods of statistical simulation of realizations of random 
processes and multi-dimensional random functions (random fields), to solve the problems of conditional maps, adding of data to 
achieve the necessary precision, and other such problems in geophysics are proposed to be applied. Theorems on the mean-square 
and another approximation of homogeneous and isotropic random 2-D fields by special partial sums  have been proved. A 
randomization method was used to formulate algorithms of statistical simulation by means of these theorems. A new effective statistical 
technique has been devised to simulate random fields in 2-D space (randomization method, spectral coefficients method and others) for 
geophysical problems. random fields in 2-D space statistical simulation based on spectral representation has been introduced in order 
to enhance map accuracy by the example of aeromagnetic survey data in the Ovruch depression. It is divided into deterministic and 
random components for data analysis. The deterministic component is proposed to approximate by cubic splines and the stationary 
random component is proposed to model on the basis of spectral expansions of random fields. Model example is the aircraft 
magnetometry data 2-D field (on the plane). According to the algorithm we received noise implementations on the study area with 
double detalization for each profile. When checking their adequacy we came to the conclusions that the relevant random components 
histogram has Gaussian distribution. The built variogram of these implementations has the best approximation by theoretical variogram 
which is connected to the Bessel type correlation function. The final stage was the imposing array of noise on the spline approximation 
of real data. As a result, we received more detailed implementation for the geomagnetic observation data in the selected area. 

Keywords: Statistical simulation, randomizations method, spline-interpolation, conditional maps. 
 
Introduction. The problems of the simulation of 2-D 

random fields with given probability characteristics arise 
solving the actual geophysics problems. In this case a spe-
cial care is necessary for reduction of calculations, amount 
of which rapidly grow together with the dimension of the 
argument of the random field. Different approaches related 
to the solving of problems of statistical simulation of ran-
dom fields where described in a lot of papers. 

In this paper the algorithms of statistical simulation of Gaus-
sian homogeneous and isotropic random fields on the plane 
using the basic spectral representation [3] are considered. 

There has been an introduced random field in 2-D 
space statistical simulation based on spectral representa-
tion in order to enhance map accuracy by the example of 
aeromagnetic survey data in the Ovruch depression. 

The spectral representation of homogeneous and iso-
tropic random fields and approximation theorems. 

Let   , 2 x x R  , is real-valued square-mean continu-

ous homogeneous and isotropic random fields on the 
plane. It means, that  E x const   (later on we assume 

that   ,0E x   and      ,E x y B x y     where 

x y    is the distance between the point x and y. It is 

known [3] that  

      ,0
0

ФB J d


                                               (1) 

where  is the bounded nondecreasing function and 

 mJ x  is the Bessel function of the first kind with the index 0.  

Let (r  are polar coordinates of a point x . 
The random field  x  admits [3] the spectral repre-

sentation 

         , cosk sink ,1 2

0 0 0
k k k k k

k
r v J r Z d J r Z d

 



 
          

 
                                               (2) 

where     , ,
0

  1 2i
k k

Z i



  are sequences of real valued 

orthogonal random measures on Borel subsets from the 
snterval , i. e.  

       , , , ,1 2 1 2Ф  1 2i j j n
k n i kEZ S Z S S S i j            (3) 

for any Borel subsets 1S  and 2S , and 

, ;

, ,

1   0

2  0k

k
v

k


  

 

If  x  is a Gaussian random field, then the random 

measures     , ,
0

  1 2i
k k

Z i



  is Gaussian random 

measures with independent values. 

The representation (2) can be used for statistical simu-
lation of Gaussian homogeneous and isotropic random 
fields with a given spectral function . 

Consider the following partition of the interval 

, ,
1

1 1
0

m m

i i m
i i



 
                            (4) 

where m  have an infinite diameter (moreover, we  

assume that  : ,m ma      the domains , ,...,1 2 1m    

have finite diameters:  : 1i i ia a       

 , ,  1ia R i m  . 

In the capacity model of the random field  ,r  we 

consider the sum 

         , cosk sink , .1 2

1 0
  

i i

m N
N
m k k k k k

i k
r v J r Z d J r Z d n N

   

 
           

  
                                        (5) 
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Let us assume in what follows that 

   
0

Ф 1Var x d


                               (6) 

Then 

   
1

1 0

Ф Ф 1
m

i

dm

i
d d



 
                              (7) 

and the following statement is valid. 
THEOREM 1. Let m, N, and am tend to infinity in such 

a way that the following conditions hold: 

1) ;
m

N

a
   2) ;0ma

N
  

3)  ;0 1
N

m
   4) ;

2

0ma

m
  

5)   ;Ф 0
ma

N d


   6)  max .
1 1

   m
i

i m

ca
d c R

m  
   

Then  

    ,
2
  0   N

m
x Q

E x x d x m


                  (8) 

and the following estimate 

     
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m
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m

            
  

   
2

2
22 4 3 Ф 2

3
m

m

N

m a Q

a

aQ
Q N d Q e

N N


     

       (9) 

is valid. 

Theorem 1 is proved in [2]. 

Assume that         .2
0

Фd


                              (10) 

This condition provides the existence of derivatives 

, .
r

 
 

 Let  :QV x x Q   and let 

         
2 21

2 Q

N N
m Q mV

x x w V x x dx         

2 2

2

1
Q QV V

dx dx
r rr

   
   

      

is Sobolev's norm of    N
mx x    in the Sobolev's space 

 1
2 Qw V on the circle with radius Q . Now the next state-

ment can be formulated. 
THEOREM 2. Let us assume that: 

1)   ,2
0

Фd


      

2) the condition of Theorem 1 holds, 

3) ,
2

3 0ma
N

m
   
 

 if m   

4)     ,3 2 2 Ф 0
m

mN d


      if .m   

Then 

      ,
2 1

2 0N
m QE x x w V     if m  . 

 
And the following estimate is true 

       
222 1 2 2

2 2 2 2 1N m
m Q

Q a
E x x w V Q N c

m

                   
 

           2 2 2 25
2 4 3 Ф 2 1 Ф Ф

4
m m m

Q N d N d d
  

 
              

  
    

    2
1

2
1 2 2 4 2

m m
m

m

Q Q a Q Qa
Qa

N N a N N N

  
             

 

    .

2
22

2 28
2 2m

m

N

a Qm m
m N m

Qa Q ca
Qa e S dФ

N m





                  
                                          (11) 

where .2

1

N

N
k

S k


   

The proof is provided in the same way as that of Theorem 1. 
THEOREM 3. Let (10) hold and 

 ,N
m r    

       cosk sink ,1 2

0 0 0

N

k k k k k
k

v J r Z d J r Z d
 



 
        

 
   (12) 

then 

    2
2

1 2
1 1

2
N
mE x x r r

N
             

              (13) 

where 

 .
0

Фk
k d


                                   (14) 

Theorem 3 is proved in [2]. 
Let 

 ,a
N r    

       cosk sink ,

.

1 2

0 0 0

0

a aN

k k k k k
k

v J r Z d J r Z d

a



 
        

 


    (15) 

We consider the partition 

   , ... ,0 1 2 10 0m m ma u u u u u a                 (16) 

And choose the point i  in every interval  , .1i iu u  Let 

     

    

, , cosk ,

sink , ,

1
1

0 1

2
1

1
          

m
N m

a
k k k i iN

k i

m

k k i i
i

r v J r Z u u

J r Z u u




 




     
   

 


       (15) 

THEOREM 4. The following inequalities hold: 

     ,, , ,
2

Фmaa
N N

a

E r r d


                           (16) 

   

     

,, ,

max ,

2

2
2

1

        

2
2 1 Ф Ф 0

maa
N N

i
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E r r

r
N d a



 

       

         

              (17) 
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maa
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N
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       max ,
2

2

10

2
Ф 2 1 Ф Ф 0i

i m

r
d N d a



 

            
     (18) 

where .1i i id u u    

The algorithms of the statistical simulation of the Gaus-
sian homogeneous and isotropic random fields 

Using the approximation theorems the algorithm of the 
statistical simulation of realizations of homogeneous and 
isotropic random fields may be formulated. We formulate 
two algorithms of such kind. The first one, based on the 
idea of randomization proposed by G.A. Mikhailov in [6–7] 
is called randomization algorithm. Assume that the spectral 
density    Фu u   exists. 

Algorithm 1. 
Choose N and am using approximating theorems; 
Take the partition (4) and calculate  .dФ

i

ip


   

In each domain  ,1i i m   take a random point 

 , ,1i i i i m     with the distribution density 

 
 

, ,

,

  

0,      

i
i i

i

u
u

p u p

u


 

 
                       (19) 

Simulate the sequences of independent standart Gaus-
sian random variables  

 , : , ; , ; ,1 2 0 1i j
kZ j k N i m    

Calculate the realization of the stochastic random field 

   

 

,

,

, cosk

sink ,

1

1 0

2              

m N
m i
N i k k i k

i k

i
k i k

r p v J r Z

J r Z

 
     

   

 
        (20) 

Check whether the realization of therandom field gen-
erated in step 5 fits the data by testing the corresponding 
statistical characteristics. 

Now we describe the algorithm based on Theorem 4. 
Algorithm 2. 
Choose the number N such that 

2
1 2

1 1

2 3
r r

N

       
 

Choose a  such that 

 Ф
3a

d
 

   

Define the partition  ,0m a  of the interval  ,0 a , such 

that 

     max ;
2

2

1

2
2 1 Ф Ф 0 0   i

i m

r
N d a m

 

           
 

Choose the point i in every interval  , .1i iu u  

Simulate the sequences of independent Gaussian ran-
dom variables 

 , : , ; , ; ,1 2 0 1i j
k j k N i m     

with zero expectation and the variance 

   ,
1Ф Фi j

k i iVar u u    . 

Calculate the realization of the stochastic random field 

   

 

, ,

,

, cosk

sink ,

1

0 1

2              

m
N m

a i
k k i kN

k i

i
k i k

r v J r

J r



 
      

    

 
          (21) 

Check whether the realization of therandom field gen-
erated in step 6 fits the data by testing the corresponding 
statistical characteristics 

The randomizing variant of this algorithm may be sug-
gested in the case when the distributions of the random 
points i  are described by (19). 

In this case it is necessary to calculate 

   

 

, ,

,

, cosk

sink ,

1

1 0

2              

m
m N

a i
i k k i kN

i k

i
k i k

r p v J r Z

J r Z



 
     

   

 
       (22) 

3. Statistical simulation methods of random fields on 
the plane by the aircraft magnetometry data 

Most of the geophysical research results are submitted 
in digital form, which accuracy depends on various random 
effects (including equipment measurement error). The map 
accuracy problem occurs when the data cannot be ob-
tained with a given detail in some areas. In such cases the 
methods of statistical modelling realizations of random 
processes and random multivariate functions (random 
fields) are recommended [1–2, 4–8] to supplement data 
missing. These methods have been developed for more 
than 20 years at the Mechanics and Mathematics Faculty 
at Taras Shevchenko National University of Kyiv. They 
were offered by professor and corresponding member of 
NAS of Ukraine M.Y. Yadrenko as a separate area for re-
search and as a means to applied aspects. 

While constructing data graphs for each account, we 
noticed that it is expedient to distinguish deterministic and 
random components. Deterministic function can be se-
lected in different ways. One determination method its ana-
lytical form (trend  if x  as a function of exponentially 

damped sinusoid or cosinusoid) was considered in [8]. But 
there is a more accurate way to select deterministic com-
ponent – approximation by cubic spline data. The differ-
ence between spline approximation of data with gaps (e.g. 
due to one) for each profile and spline curve for all points is 
a random process that is also stationary for most profiles. 

According to graphs for each profile the stationary ran-
dom component  i x  ("noise" – random process) and 

trend  if x  as determined spline function were selected. 

Input data on the profile is a random process  i x : 

      , , ,...,  7 8 20i i ix f x x i                    (23) 

Solid line on Fig. 1 shows a deposited spline approxi-

mation    1
iS x , built by means of the MathCad software 

for PR1 data that are taken without spaces. Parameters 
defined by the data were determined for such spline. 
They ask each profile trend  if x . Dashed line shows the 

spline approximation graph    2
iS x  of the first profile 

data with gaps due to one point of observation (i.e. for 50 
points out of 100). Noise was obtained by calculating the 
following difference: 

         , , ,...,1 2   7 8 20i i ix S x S x i     
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From observations (values) of noise  i x  in all 13 pro-

files we created two-dimensional array that represents ho-
mogeneous and isotropic random field  ,i r   on the 

plane ( r and  – polar coordinates of x  point) with zero 
mathematical expectation. By fields of such properties we 
can apply the method of statistical modelling of random 
fields based on their spectral expansions [4], which allows 
finding the perfect image of entire observations field for 
their certain implementation values. So we generate addi-
tional noise data in the points where geomagnetic meas-
urements were not carried out, for example, with double 
precision intervals of 50 compare to 100 meters. We can 

impose this data on the spline curve trend    1
iS x  for each 

profile and obtain more detailed aeromagnetic survey data. 
This method differs from the traditional, which uses aver-
age value of neighboring measured points for calculation 
point. Our method takes into account the correlation be-
tween data points and their statistical distribution. The idea 

of its use to resolve the problem described in paper be-
longs to Vyzhva A.S. Using the above method makes it 
possible to supplement the missing data in the study area, 
taking into account their statistical nature. 

According to the algorithm 2 we received noise imple-
mentations on the study area with double precision (200 
points) for each profile (13 profiles). When checking their 
adequacy we made the conclusions that the relevant noise 
histogram (Fig. 2) has Gaussian distribution. The built 
variogram of these implementations has the best approxi-
mation by theoretical variogram which is connected to the 
Bessel type correlation function for parameter 
a ≈3,25 * 105: 

     ,12
   0

J a
B a

a


  


                     (24) 

This confirms the adequacy of simulated implementa-
tions to the real research data. 
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Fig. 2. Histogram of logarithmic ΔTan simulated data in PR1 
 
Variogram of simulated and input data arrays ΔTan for 

PR7-PR20, corresponding to Bessel type correlation func-
tion (24) at the value of the parameter a ≈3,25 * 105 is 
shown on Fig. 3. 
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Fig. 3. Variogram of simulated and input data arrays ΔTan for PR7-PR20, corresponding  

to Bessel type correlation function    
,12  

 

J a
B

a


 


 ( a ≈3,25*105) 

 
It is known [1] that variogram     is related to the cor-

relation function  B  with expression: 

     0B B      

Variogram describes the dependence of the mean 
square difference of random field values (in general non-
isotropic) at two points on the distance and direction be-
tween these points. This function for isotropic random field 
depends on the distance  between points. 

The spectral density    Фf     of homogeneous and 

isotropic random field  ,r   on a plane can be deter-

mined [8] by its correlation function  B   as follows: 

     0
0

f xJ x B x dx


                         (25) 

Since our noise data variogram corresponds to Bessel 
type correlation function (24), the spectral function for 
these data can be defined as follows: 

     0
0 0

Ф xJ x B x dxd
 

       

Then the spectral function  Ф   can be calculated by 

the correlation function  B   in the expression: 

     0 1
0 0

2
Ф J x J ax dxd

a

 
      . 

The final stage was the imposing array of noise on the 
spline approximation of real data. As a result, we received 
more detailed implementation for the geomagnetic obser-
vation data in the selected area. The figure shows the 
maps that were built before numerical simulation and after 
completing the data set with double precision (Fig. 4). 
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Fig. 4. Map of magnetic field ΔTan (general) M: 1:10 000, (PR7, PR20) (a), map of simulated magnetic field ΔTan M: 1:10 000 (b) 

V
ar

io
gr

am
 v

al
u

es
 

Distance   (m) 



ISSN 1728–2713 ГЕОЛОГІЯ. 4(75)/2016 ~ 93 ~ 

 

 

Conclusions. The statistical simulation method of ran-
dom field implementations makes it possible to supplement 
with a given detail the measurement results of magnetic 
field full vector. It can also be used to identify abnormal 
areas. Such areas can be identified more accurately in the 
geomagnetic data, if to compare the actual deviation from 
the ideal random simulated geomagnetic field to the prop-
erties of homogeneity and isotropy. 
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ПРО МЕТОДИ СТАТИСТИЧНОГО МОДЕЛЮВАННЯ ВИПАДКОВИХ ПОЛІВ  
НА ПЛОЩИНІ ДЛЯ ДАНИХ АЕРОМАГНІТОМЕТРІЇ 

Розроблено універсальні методи статистичного моделювання (методи Монте-Карло) геофізичних даних, які дають можливість 
вирішити проблеми генерування реалізацій випадкових полів на площині на сітці будь-якої регулярності та детальності. В геофізиці 
більшість результатів досліджень подається у цифровій формі, точність якої залежить від різних випадкових впливів (у тому числі, 
від похибки вимірювання апаратури). При цьому, виникає проблема кондиційності карт у випадку, коли дані неможливо отримати із 
заданою детальністю на деяких ділянках. Для вирішення проблем кондиційності карт, доповнення даними для досягнення необхідної 
точності та інших проблем подібного роду, в геофізичних задачах запропоновано застосовувати методи статистичного моделю-
вання реалізацій випадкових процесів та багатовимірних випадкових функцій (випадкових полів). Використано теореми про оцінку 
середньоквадратичної та інших апроксимацій однорідних та ізотропних випадкових полів у двовимірному просторі частковими сума-
ми рядів спеціального вигляду, за допомогою яких сформульовано алгоритми чисельного моделювання реалізацій таких випадкових 
полів методом рандомізації. Розроблено нову ефективну методику застосування до розв'язання геофізичних задач методів статис-
тичного моделювання випадкових полів у двовимірному просторі (методу рандомізації, методу спектральних коефіцієнтів та ін.). На 
прикладі даних аеромагнітної зйомки в районі Овруцької западини впроваджено статистичне моделювання реалізацій випадкових по-
лів на площині на основі спектрального розкладу у вирішення проблем кондиційності карт шляхом доповнення даних до необхідної 
детальності. При аналізі даних по профілях їх розділено на детерміновану та випадкову складові. Детерміновану складову даних про-
понується наближати кубічними сплайнами, oднорідну ізотропну випадкову складову - моделювати на основі спектрального розкладу 
випадкових полів. Модельний приклад - дані аеромагнітної зйомки в двовимірному варіанті (на площині). За наведеним алгоритмом 
було отримано реалізації випадкової складової на області дослідження із подвоєною детальністю по кожному профілю. При перевірці 
їх на адекватність зроблено висновки, що відповідна гістограма випадкової складової має гауссівський розподіл. Побудована варіог-
рама цих реалізацій має найкраще наближення теоретичною варіограмою, яка пов'язана із кореляційною функцією бесселевого типу. 
Завершальним етапом роботи було накладення масиву випадкової складової на сплайнову апроксимацію реальних даних. У результаті 
цього отримано більш детальну реалізацію для даних геомагнітних спостережень у виділеній області. Отже, метод статистичного 
моделювання реалізацій випадкових полів дає можливість доповнити із заданою детальністю даними результати вимірювань повно-
го вектора напруженості магнітного поля. 

Ключові слова: статистичне моделювання, метод рандомізації, сплайн-інтерполяція, кондиційність карт. 
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О МЕТОДАХ СТАТИСТИЧЕСКОГО МОДЕЛИРОВАНИЯ СЛУЧАЙНЫХ ПОЛЕЙ  
НА ПЛОСКОСТИ ДЛЯ ДАННЫХ АЭРОМАГНИТОМЕТРИИ 

Разработаны универсальные методы статистического моделирования (методы Монте-Карло) геофизичеких данных, которые 
дают возможность решить проблемы генерирования реализаций случайных полей на плоскости на сетке любой детальности и ре-
гулярности. В геофизике большинство результатов исследований подается в цифровой форме, точность которой зависит от раз-
ных случайных влияний (в том числе, от погрешности измерения аппаратуры). При этом возникает проблема кондиционности карт 
в случае, когда данные невозможно получить в некоторых участках. Для решения проблем кондиционности карт, дополнения данны-
ми для достижения необходимой точности и других проблем подобного рода, в геофизических задачах предлагается применять ме-
тоды статистического моделирования реализаций случайных процессов и многомерных случайных функций (случайных полей). Ис-
пользованы теоремы об оценке среднеквадратической и других аппроксимаций однородных и изотропных случайных полей в двухме-
рном пространстве частичными суммами рядов специального вида, при помощи которых сформулированы алгоритмы численного 
моделирования реализаций таких случайных полей методом рандомизации. Разработана новая эффективная методика применения 
при решении геофизических задач методов статистического моделирования случайных полей в двухмерном пространстве (метода 
рандомизации, метода спектральных коэффициентов и др.). На примере данных аэромагнитной съемки в районе Овручской впадины 
разработана методика внедрения статистического моделирования случайных полей на плоскости на основании спектрального раз-
ложения в решение проблем кондиционности карт дополнением данных необходимой детальности. При анализе данных по профилям 
их разделяют на детерминированную и случайную составляющие. Детерминированную составляющую предлагается аппроксимиро-
вать кубическими сплайнами, однородную изотропную случайную составляющую - моделировать на основе спектрального разложе-
ния случайных полей. Модельный пример - данные аэромагнитной съемки в двумерном варианте (на плоскости). С помощью предло-
женного алгоритма были получены реализации случайной составляющей в области исследования с удвоенной детальностью по 
каждому профилю. При проверке их на адекватность сделаны выводы, что соответствующая гистограмма случайной составляю-
щей имеет гауссовское распределение. Построенная вариограмма этих реализаций имеет наилучшее приближение теоретической 
вариограммой, которая связана с корреляционной функцией бесселевого типа. Заключительным этапом роботы было наложение 
массива случайной составляющей на сплайновую аппроксимацию реальных данных. В результате этого получена более детальная 
реализация для данных геомагнитных наблюдений в выделенной области. Таким образом, метод статистического моделирования 
реализаций случайных полей дает возможность дополнить с заданной детальностью данными результаты измерений полного век-
тора напряженности магнитного поля. 

Ключевые слова: статистическое моделирование, метод рандомизации, сплайн-интерполяция, кондиционность карт. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 




