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(Рекомендовано членом редакційної колегії д-ром фіз.-мат. наук, проф. Б.П. Масловим) 
Дослідження напружено-деформованого стану техногенно зміненого масиву гірських порід при розробці пластових ву-

гільних родовищ доцільно проводити методами механіки суцільного середовища, які базуються як на аналітичних та чи-
сельних рішеннях, так і на даних натурних і лабораторних експериментів. Аналітичні рішення надають можливість прово-
дити найменш "затратні" експерименти при широкому діапазоні головних факторів та параметрів середовища. У статті 
представлено алгоритм та програмну реалізацію моделювання напружено-деформованого стану пластового вугленосно-
го масиву. Вихідною базовою моделлю прийнято модель однорідного пружного масиву. Побудову розрахункових схем вико-
нано для умов плоского деформованого стану. Масив гірських порід, що вміщує пласт, моделюється як однорідний транс-
версально-ізотропний породний масив. Визначено критерії правильності розв'язку, які встановлюються шляхом перевірки 
граничних умов. З метою розв'язку задачі про розподіл напружень в масиві, який моделюється лінійно-деформованим сере-
довищем навколо виробки будь-якої форми поперечного перерізу, визначено відповідний вигляд відображальної функції оди-
ничного кола на контур виробки довільного перерізу. Виконано графічне моделювання алгоритму аналітичного розрахунку 
напружено-деформованого стану фрагменту геологічного масиву з виробкою довільної форми. Представлено програмну 
реалізацію розробленого алгоритму. 

Ключові слова: напружено-деформований стан, вугільний пласт, алгоритм, моделювання, програмна реалізація. 
 
Вступ та постановка проблеми. Проблема вивчення 

напруженого стану масивів порід неоднорідної будови із 
властивостями порід, що змінюються, як під впливом 
геологічних процесів, так і інженерних споруд, має вели-
ке практичне та наукове значення. Дослідження величин 
і розподілу природних напружень в породних комплексах 
однорідної і неоднорідної будови являє собою складну 
задачу, що обумовлено великою кількістю діючих приро-
дних геологічних і техногенних факторів і сил.  

Різноманіття гірничо-геологічних умов та зростання 
глибин розробки родовищ корисних копалин призводять 
до необхідності поглибленого аналізу напружено-
деформованого стану масивів гірських порід, у тому чис-
лі і навколо підземних виробок. Дослідження геомеханіч-
них процесів при цьому має першочергове значення, 
зокрема, при їх кількісному прогнозуванні, обґрунтуванні 
надійності підземних споруд в певних гірничо-геологічних 
умовах, і окрім того, дозволяє вирішувати низку теорети-
чних питань, пов'язаних із формуванням та природою 
міцності гірських порід. Розробка родовищ корисних ко-
палин викликає в породному масиві цілий комплекс різ-
них механічних процесів: перерозподіл напружень і де-
формацій, прориви підземних вод, різноманітні газоди-
намічні явища тощо. Вивчення вказаних явищ є важли-
вим завданням, так як саме вони визначають економічну 
доцільність і безпеку проведення робіт. 

Вагомий внесок у теорію і практику геомеханічного 
забезпечення гірничих робіт при розробці пластових 
родовищ внесли такі вчені та спеціалісти як 
К.А. Ардашов, A.A. Борисів, Я.А. Біч, О.В. Ковальов, 
C.B. Комісаров, В.Г. Лабазін, A.M. Ліньков, І.М. Пєтухов, 
А.Г. Протосеня, Н.М. Проскуряков, В.Д. Слєсарєв, 
В.М. Шик та ін. Узагальнюючи сучасні методи дослі-
дження напружено-деформованого стану (НДС) геоло-

гічного середовища, слід зазначити, що вони належать 
до таких головних груп: 

геолого-структурні; 
експериментальні (лабораторне моделювання); 
геодезичні; 
натурні вимірювання; 
теоретичні або розрахункові; 
геофізичні. 
У той же час, механізм деформування, руйнування 

та осідання гірських порід при розробці вугільних родо-
вищ має особливості, що потребують додаткових до-
сліджень. Адже отримання надійних прогнозних оцінок 
механічних станів масиву (включаючи компоненти тен-
зорів напружень і деформацій та вектору переміщень) 
дозволяє своєчасно завадити небезпечним проявам 
гірничого тиску в підготовчих виробках, підвищити без-
пеку ведення гірничих робіт у межах шахт, мінімізувати 
витрати на експлуатацію гірничих виробок та загалом 
вирішити задачу оцінки стійкості гірського масиву [2, 6-
8, 9, 12]. Вирішення даного завдання потребує подаль-
шого ефективного використання методів механіки су-
цільних середовищ із відповідним відображенням про-
цесів зрушення гірських порід та осадки відпрацьованої 
товщі та, відповідно, розробки спеціальних методик, що 
базуються на даних практики (маркшейдерські спосте-
реження, спеціальні дослідження процесів деформацій, 
механічних характеристик масивів тощо).  

Розробка алгоритму моделювання НДС фрагменту 
однорідного геологічного масиву з виробкою. В загаль-
ному вигляді алгоритми розрахунку НДС фрагменту 
однорідного геологічного масиву з виробкою діляться 
на дві категорії: алгоритми з використанням чисельних 
методів та алгоритми з аналітичним рішенням. Кожна 
група алгоритмів має власні переваги і недоліки.  
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Як правило, точний аналітичний розв'язок отримати 
неможливо, і він вимагає значної роботи з побудови 
достатньо адекватної математичної моделі. Водночас 
кінцеві обчислювальні витрати на отримання результа-
ту аналітичними методами фактично лінійні від набору 
вхідних даних. Ці дані зазвичай отримуються за резуль-
татами натурних експериментів (шахтних або лабора-
торних). Необхідно також відмітити, що при викорис-
танні аналітичних методів доводиться, як правило, при-
ймати ряд гіпотез і припущень відносно властивостей 
досліджуваного середовища та протікання у ньому фі-
зико-механічних процесів. 

На противагу аналітичним, чисельні методи здатні 
дати прийнятне рішення при мінімумі витрат (у разі ви-
користання вже існуючих реалізацій базових алгорит-
мів), проте обчислювальні витрати в кращих випадках 
досягають поліноміального рівня від обсягу вхідних 
даних моделі. Серед цих методів найбільш широко ві-
домими є метод скінченних різниць, метод скінченних 
елементів, метод граничних елементів, метод гранич-
них інтегральних рівнянь та інші методи, які отримали 
велике розповсюдження в інженерному і науковому 
середовищі при використанні потужної обчислювальної 
техніки. При розрахунках НДС гірських масивів ефекти-
вним є метод граничних елементів, що використовуєть-
ся для розв'язку просторових задач теорії пружності. 
Він відрізняється від методу скінченних елементів тим, 
що дискретизація здійснюється не всередині області, в 
якій досліджується напружений стан, а тільки на її гра-
ниці. Такою границею є поверхня досліджуваної вироб-
ки, яка представляється у вигляді мозаїки граничних 
елементів. Шляхом граничного переходу в формулах 
розв'язку задаються граничні інтегральні рівняння. Роз-
в'язання задачі про розподіл напружень в досліджува-
ній області, в масиві навколо виробки (виробок), вико-
нується на підставі умов (напружень, переміщень), що 
задаються на границі області – на поверхні виробки. 
Точність вирішення задач методом граничних елемен-
тів завжди вище, ніж іншими чисельними методами. 

Ефективне застосування вказаних методів для ви-
рішення важливих прикладних задач геомеханіки прямо 
залежить від розробки обчислювальних програм та їх 
успішної реалізації. Необхідно зауважити, що чисельні 
методи хоч і є найефективнішими практично для всіх 
класів задач, які розглядаються в гірничій геомеханіці, 
але і при їх використанні потрібно застосовувати різно-
го роду спрощення, схематизації та припущення, зок-
рема, при вивченні механічних процесів у неоднорід-
них, багатозв'язаних, тріщинуватих, анізотропних маси-
вах гірських порід. Ефективне застосування чисельних 
методів для вирішення важливих прикладних завдань 
залежить від розробки програмних середовищ (інтер-
фейсів), обчислювальних (програмних, системних) про-
цедур та їх реалізації на різних системних платформах 
(LINUX, WINDOWS та ін.). 

На сьогодні вирішення багатьох завдань моделю-
вання механічних процесів в масивах гірських порід 
здійснюється переважно чисельними методами за до-
помогою сучасних програмних продуктів [1, 3, 5, 10 та 
ін.]. Ці програмні комплекси, разом із універсальністю, 
мають інтерфейс, який є зручним для користувача як 
при побудові моделей, так і при наочному аналізі отри-
маних результатів. Переважно у цих програмах для 
розрахунків параметрів напружено-деформованого 
стану застосовується метод скінченних елементів. Слід 
виокремити такі програмні розробки: Ansys – універса-
льний скінченноелементний програмний пакет, що до-
зволяє вирішувати задачі в областях: міцності та оцінки 
поведінки масивів гірських порід, Plaxis 2D (Plaxis 3D 

Foundation, Plaxis 3D Tunnel) – програма для розв'язку 
задач механіки грунтів; FLAC 2D (FLAC 3D) – найбільш 
універсальна програма, яка широко використовується 
для гірничо-геомеханічних та геотехнічних досліджень, 
включає багато вбудованих геомеханічних моделей, 
також дозволяє створювати та інтегрувати користува-
цькі моделі, включає можливості моделювання різно-
манітних видів кріплення (стальних і канатних анкерів, 
бетону, залізобетону, арочних кріплень); процесів по-
чергової виїмки порід; геологічних порушень; порового 
тиску вод; ABAQUS – один з найпотужніших пакетів для 
проведення всебічного скінченноелементного аналізу, є 
повністю універсальним та дозволяє вирішувати задачі 
як моделювання механізмів та конструкцій, так і масивів 
гірських порід у тривимірному моделюванні; UDEC – 
програма, що базується на методах механіки дискрет-
ного середовища. Дозволяє створювати моделі поведі-
нки розбірних масивів; масивів, які мають блочну  
незв'язну структуру; незв'язних грунтів.  

Слід зазначити, що наведені програмні комплекси ма-
ють певну універсальність, однак з певними проблемами 
застосовуються для конкретних умов, і не завжди можуть 
врахувати вагомі фактори виникнення процесів. Це вима-
гає застосування особливих підходів до моделювання 
НДС, що зумовлюються особливими умовами будови по-
родного масиву та перебігу геомеханічних процесів. 

Алгоритм розрахунку НДС з аналітичним рішенням. 
Базою для побудови розрахункових схем є прийнята 
гірничо-геомеханічна модель масиву гірських порід. Як 
приклад проаналізуємо НДС пластового вугленосного 
масиву при розробці потужних та середньої потужності 
пластів довгими очисними забоями. Вихідною базовою 
моделлю приймемо модель однорідного пружного ма-
сиву. Побудову розрахункових схем виконано для умов 
плоского деформованого стану. Масив гірських порід, 
що вміщує пласт, моделюється як однорідний трансве-
рсально-ізотропний породний масив. 

Оскільки, побудова об'ємних моделей досить тру-
домістка та машинний час розрахунків у таких моделей, 
найчастіше, дуже великий (а у більшості випадків дово-
диться "жертвувати" ступінню апроксимації та викорис-
товувати саме пружну модель), то практично основна 
частина досліджень проводиться на плоских моделях. 
У нашому випадку, при моделюванні відпрацювання 
вугільних пластів у плоскій постановці (плоский дефор-
мований стан) необхідно розглянути ряд характерних 
перетинів для різних дільничих виробок і міжлавових 
целіків та розв'язати задачу про визначення напружень 
навколо підземних виробок. Для цього використовуєть-
ся розв'язок плоскої задачі теорії пружності про напів-
скінчений важкий масив, обмежений земною поверхнею 
та послаблений виробкою.  

Загалом форма поперечного перерізу горизонталь-
них виробок встановлюється відповідно до фізико-
механічних властивостей порід, величини і напрямку 
гірничого тиску, терміну служби й прийнятої конструкції 
кріплення. Якщо виробка не кріпиться, то їй надається 
форма поперечного перерізу, яка наближається до фо-
рми склепіння природної рівноваги. 

Задача про розподіл напружень навколо круглого 
отвору є задачею теорії пружності. Згадана задача (ві-
дома як узагальнена задача Кірша) може бути розв'я-
зана методом Колосова-Мусхелішвілі за допомогою 

комплексних потенціалів  z  та  z , регулярних в 

області S, що повністю визначають стан пружного се-
редовища за граничних умов за допомогою відомих 
формул Колосова-Мусхелішвілі. Добираючи відповід-
ний вигляд відображальної функції одиничного кола на 
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контур виробки довільного перерізу, можна розв'язати 
задачу розподілу напружень в масиві, який моделюєть-
ся лінійно-деформованим середовищем навколо виро-
бки будь-якої форми поперечного перерізу.  

У загальному вигляді алгоритм розрахунку НДС 
аналітичним методом відображений в роботі 
Н.С. Буличова [4]. Для визначення напружень навколо 
виробки використовується розв'язок плоскої задачі тео-
рії пружності про напівнескінченний важкий масив (об-
ласть S), обмежений земною поверхнею L та послаб-
лений виробкою (контур L1). 

Шукані компоненти повних напружень в області S 
можуть бути представлені у вигляді суми двох доданків: 

   

   

   

0 1

0 1
y

0 1
xy

;

;

,

x x x

y y

xy xy

    

    

    

                  (1) 

де  0
x ,  0 ,y

 0
xy  – початкові напруження, які діяли в не-

порушеному масиві (до утворення виробки); 
 1
x  ,  1 ,y

 1
xy  – додаткові («знімні») напруження, викли-

кані утворенням виробки. 
Компоненти повних та початкових напружень задо-

вольняють системі диференціальних рівнянь рівноваги: 

;

0

xyx

xy y

x y

x y


  

 
 

 
 

                (2) 

та умові сумісності деформацій: 
2 22

2 2
.y xyx

y x x y

    
 

   
                        (3) 

На відміну від повних напружень, компоненти дода-
ткових напружень задовольняють однорідній системі 
диференціальних рівнянь рівноваги при тому ж рівнянні 
сумісності деформацій (3). 

Граничні умови для повних напружень: 
0, 0x xy     на L;             (4) 

   
   

x cos , cos , 0,

cos , cos , 0

xy

xy y

n x n y

n x n y

    


    
на L1 .      (5) 

Умови (4) відображають відсутність нормальних і 
дотичних напружень на земній поверхні. Умови (5) 
означають, що контур перерізу виробки вільний від  
напружень; (n, x) та (n, y) - це кути між нормаллю до 
контуру кругового вирізу та осями x та y. 

Граничні умови для початкових напружень: 
 0 0;x    0 0xy       на L           (6) 

В якості частинного розв’язку неоднорідної системи 
рівнянь (2) можна взяти початкове поле напружень: 

 
   
 

0

0

0

;

;

0.

x

y

xy

x H

x H

   

   

 

                  (7) 

Граничні умови для додаткових напружень на L:  
           1 1cos , cos , cos , ;x xyn x n y x H n x         (8)       

            1 1
1cos , cos , cos ,xy n x n y x H n y      на L1. (9) 

Складові додаткових напружень перетворюються в 
нуль на нескінченності. У зв’язку з тим, що виробка пе-
ребуває на глибині H x , величиною ординати x, 
порівняно зі значно більшою величиною H, можна зне-
хтувати (зі строгого розв’язку задачі для півплощини з 
круговим отвором, отриманого Д. І. Шерманом, випли-

ває, що вплив вільної від напружень земної поверхні 
можна не враховувати вже при глибині 05H r ). Тоді 

умови на L1 набувають вигляду: 
           
           

1 1 1

1 1 1

cos , cos , cos , ;

cos , cos , cos ,

x xy

xy y

p n x n y H n x

q n x n y H n y

     

     
    (10) 

Розв’язання поставленої задачі зводитися до 
розв’язання однорідної системи диференціальних рів-
нянь рівноваги за умови сумісності деформацій та гра-
ничних умов. 

Сформульована вище задача (задача про розподіл 
напружень навколо круглого отвору) є задачею теорії 
пружності. Згадана задача (відома як узагальнена за-
дача Кірша) може бути розв’язана методом Колосова-
Мусхелішвілі за допомогою комплексних потенціалів 
 z  та  z , регулярних в області S, що повністю ви-

значають стан пружного середовища з граничних умов 
за допомогою відомих формул Колосова-Мусхелішвілі. 

Ця задача простіше розв’язується за допомогою 
функції напружень, запропонованої в 1861 р. датським 
астрономом Ері (Airy): 

2 2 2

2 2
, ,x y xyy x x y

  
   
   
     .        (11) 

Функція напружень в даному випадку може бути 
прийнята у вигляді: 

 2 4 2 cos2 .Ar Br Cr D             (12) 

Сталі інтегрування A, B, C и D визначаються з гра-
ничних умов. 

Нехтуючи проміжковими перетвореннями, наведемо 
остаточні формули для напружень (тут стискаючі на-
пруження прийняті за додатні): 

2 4 2
0 0 0
2 4 2

2 4
0 0
2 4

4 2
0 0
4 2

1 1
1 1 3 4 cos2 ;

2 2

1 1
1 1 3 cos2 ;

2 2

1
1 3 2 sin2 .

2

r

r

r r r
H

r r r

r r
H

r r

r r
H

r r

     
        

     
     

       
     

 
    

 





   

   

  

  (13) 

Для визначення потенційно небезпечних зон знахо-
димо за відомими формулами переходу всі компоненти 
напружень в декартовій системі координат 

 

2 2

2 2

sin cos sin2 ;

cos sin sin2 ;

sin2 cos2 .
2

y x xy

y x xy

y x

y xy

  

  


 







      

      

 
   

 

За компонентами напружень в декартовій системі 
координат обчислюємо девіатори напружень 

ij ij ijs    , де 11 22 33

3

 

  

 , 
1,

0,ij

i j

i j


  

 , 

1,2,3ij  . 
За компонентами девіаторів напружень обчислюємо 

вираз для інтенсивності дотичних напружень 
1

2 ij ijT S S . 

В кожній точці досліджуваного тіла порівнюємо оде-
ржаний вираз для інтенсивності дотичних напружень із 

величиною 
yT , де 

3
y

yT 
 , а y - величина межі текучо-

сті розглядуваного матеріалу. В тих точках, де 
yT T , 

згідно із критерієм пластичності Губера-Мізеса, можли-
вий розвиток пластичних деформацій. Таким чином, 
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геометричне місце точок, де виконується умова 
yT T  

визначає конфігурацію потенційної зони пластичності. 
Напруження в характерних точках зручно характе-

ризувати безрозмірними величинами відношення цих 
напружень до початкових напружень в розглянутих точ-
ках. Такі величини називаються коефіцієнтами конце-
нтрації напружень. 

З віддаленням від виробки напруження наближаються 
до своїх початкових значень, які існували в масиві до про-
веденняь виробки. А це значить, що прохідка виробки 
викликає перерозподіл напружень в масиві в певній обме-
женій області, яка називається зоною впливу виробки. 

Добираючи відповідний вигляд відображальної фун-
кції одиничного кола на контур виробки довільного пе-
рерізу, можна розв’язати задачу розподілу напружень в 
масиві, який моделюється лінійно-деформованим пру-
жним середовищем навколо виробки будь-якої форми 
поперечного перерізу. Так, при 

31

6
z r    

 
                    (14) 

ми отримуємо наближене конформне відображення кон-
туру виробки квадратного перерізу з округленими кутами. 

При існуючих формах поперечного перерізу гірничих 
виробок і тунелів різного призначення, з достатньою 
для практичних розрахунків точністю може бути вико-
ристана відображальна функція вигляду: 

 
5

1

0

.n
n

n

z a 



             (15) 

Таким чином, алгоритм обчислення напружень в 
пружному середовищі в околі виробки довільного пере-
різу буде представлений у такий спосіб: 

1. Вихідними даними є величини a0, а1,…, а5 – кое-
фіцієнти відображальної функції, яка реалізує конфор-
мне відображення зовнішності одиничного кола на зов-
нішність контуру поперечного перерізу виробки; λ - ко-
ефіцієнт бокового тиску в непорушеному масиві. 

2. Розрахунок напружень зводитися до виконання 
наступних операцій: 

а) Визначаються величини: 

2
1

0

; 
a

q
a

 3
2

0

;
a

q
a

 4
3

0

;
a

q
a

 5
4

0

;
a

q
a

  

 1 1 3 2 41 2 ;h q q q q   2 2 1 4;h q q q  3 3;h q 4 4;h q  

     1 2 4
1 2

3 4

2 1 1 2
;

1 2

h h q
d

q q

   


 
   2 2 1 41 ;d h d q     

 3 31 ;d q      4 41 ;d q    

1 1 3 2 42 ;A d q d q  2 1 4.A d q                (16) 

б) При зміні криволінійних координат ρ та θ в межах 
0≤θ≤π; 1≤ρ≤5 (значення ρ та θ послідовно змінюються з 
певним кроком), обчислюють величини: 

   
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1
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n

n

c q n 


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1 2 1 1 2 2 1 1 2;A a c a c b d bd             1 2 1 1 2 2 1 1 2;B a d a d b c bc             

       2 2

1 3 1 1 1 1 3 1 1 1 1 3 1 1 1 1 32 ;C c c a d b d c b d a a c d c d b                        
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0 1 0 1 1;A c A d B C        1 0 1 0 1 1.B c B d A D         

в) Визначаються (при кожному значенні ρ і θ) напру-
ження в пружній площині від одиничного навантаження 
за формулами: 
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Моделювання алгоритму розрахунку НДС на ос-
нові графічних нотацій. В загальному вигляді графіч-
на нотація - це спосіб представлення алгоритму (архі-
тектури, поведінки, структури) комп’ютерної програми в 
графічній формі. Дана форма може бути зведена до 
графа і розглядатися з позиції теорії графів. Формаль-
но, граф-схема алгоритму (ГСА) - кінцевий зв’язний 
орієнтований граф ,G A V  , вершини якого 

, 1,ia A i N   відповідають операторам, а дуги 

 , , 1, ,k i ja a V M     , 1,i j M  задають порядок 

проходження вершин (операторів) алгоритму, де 
N A   — число вершин графа, M V  — число дуг. 

У більш широкому сенсі вершинам графа відповідають 
не тільки операторні вершини, а й умовні, початкова та 
кінцева вершини і т.д. 

За допомогою графічної нотації ДРАКОН [11] було 
проведено графічне моделювання алгоритму аналітич-
ного розрахунку напружено-деформованого стану фра-
гменту однорідного геологічного масиву з виробкою 
довільної форми. Результати графічного моделювання 
представлені на рис. 1.  

Програмна реалізація. Даний алгоритм був описа-
ний мовою програмування Object Pascal. 

Для суто математичних покрокових обчислень був 
створений клас TNDSCalculator, де зберігаються вихідні 
дані, такі як коефіцієнти відображальної функції, коефі-
цієнт бічного тиску в непорушеному середовищі тощо, 
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як результат виводяться ізолінії напружень навколо 
виробки (Рис.2): 

На вкладці Picture будується конформне відобра-
ження зовнішності одиничного кола на зовнішність кон-

туру поперечного перерізу виробки. Фігура контура за-
дається  коефіцієнтами відображальної функції a0, 
а1,…, а5 (Рис. 3): 

 

 
 

Рис. 1. Графічне моделювання алгоритму аналітичного розрахунку напружено-деформованого стану 
 фрагменту однорідного геологічного масиву з виробкою довільної форми 

 

 

 

 

 

Рис 2. Візуалізація ізоліній напружень Рис. 3. Візуалізація фігури контуру поперечного перерізу 
виробки 

 

На вкладці Graph будуються графіки залежності напружень  , r , r  від радіуса r  та кута   (Рис. 4). 
 

 
 

Рис. 4. Побудова графіку залежності напружень  , r , r  від радіуса r  та кута   
 

Верифікація програмної реалізації алгоритму. Для 
перевірки даної методики було взято розрахунок, наве-
дений у публікації [4]. Додатково було змодельовано 
коефіцієнти комплексного полінома, що задає форму 

виробки, із використанням пакету MathCAD. Результати 
даного моделювання представлені нижче: 

1. Визначення коефіцієнтів комплексного полінома для 
трапецієподібного контура (Рис.5) (згідно підходу Бойма):  

 

0 1 2 3 4 5

1
0.009, 0.167, 0.058, 0.141, 0.011, 0, 15, 0, ..2 ,a a a a a a N

N
             
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Рис. 5. Визначення параметрів напружень у межах трапецієподібного контура 
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Визначення коефіцієнтів комплексного полінома для контура у формі склепіння (Рис. 6): 
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Рис. 6. Визначення параметрів напружень навколо контура у формі склепіння 

 
Визначення коефіцієнтів комплексного полінома для контура у формі півкруга (Рис. 7): 

3
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Рис. 7. Визначення параметрів напружень навколо контура у формі напівкруга 
 
Розроблений програмний комплекс забезпечує ре-

зультати розрахунку НДС навколо виробки довільної 
форми. 

Висновки. Дослідження НДС техногенно зміненого 
масиву гірських порід при розробці пластових вугільних 
родовищ найбільш доцільно проводити методами ме-
ханіки суцільного середовища, які базуються як на ана-
літичних та чисельних рішеннях, так і на даних натур-
них і лабораторних експериментів. Аналітичні рішення 
надають можливість проводити найменш "затратні" 
експерименти при широкому діапазоні як головних чин-
ників, так і їх величин, однак їх точність залежить від 
повноти врахування факторів. При моделюванні від-
працювання вугільних пластів у плоскій постановці 
(плоский деформований стан) розглянуто характерні 
перетини для різних дільничих виробок. Розглянуто 
алгоритм розрахунку НДС аналітичним методом. Для 
визначення напружень навколо виробки використову-
ється розв'язок плоскої задачі теорії пружності про на-
півнескінченний масив, обмежений земною поверхнею 
та послаблений виробкою. Визначено критерії прави-
льності розв'язку, які встановлюються шляхом перевір-
ки граничних умов. З метою розв'язку задачі про розпо-
діл напружень в масиві, який моделюється лінійно-
деформованим середовищем навколо виробки будь-
якої форми поперечного перерізу, визначено відповід-
ний вигляд відображальної функції одиничного кола на 
контур виробки довільного перерізу.  
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DEVELOPMENT OF ALGORITHMS AND SOFTWARE COMPONENTS  
FOR MODELING OF STRESS-STRAIN STATE  

OF ROCKS DURING COAL DEPOSITS EXPLORATION 
Studies of the stress-strain state of technologically modified rock mass with the exploration of coal deposits are carried out by the methods of 

continuum mechanics, based both on analytical solutions and data of field and laboratory experiments. Analytical solutions provide the ability to do the 
least costly experiments in a wide range of important factors and environmental parameters. The consideration is given to the algorithm and programme 
module for the simulation of the stress-strain state of coal-bearing strata. The model of homogeneous elastic solid massive is considered as a base 
model. Developing of basic schemes was carried out for conditions of plane strain. Rock massive with the layer is modeled as a homogeneous 
transversely isotropic body. Criteria solutions are established by checking of boundary conditions. In order to solve the task of the distribution of 
stresses in the rock massive, which is modeled as a linear deformable environment around the excavation of any cross-sectional shape, the appropriate 
type of the unit disk functions was determined. The graphical modeling of the analytical algorithm calculated the stress-strain state of the geological 
massif with the excavation of any shape was carried out. The software application of the developed algorithm is presented. 

Keywords: stress-strain stateб, coal layer, algorithm, simulation, software implementation. 
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РАЗРАБОТКА АЛГОРИТМОВ И ПРОГРАММНЫХ КОМПОНЕНТ МОДЕЛИРОВАНИЯ  
НАПРЯЖЕННО-ДЕФОРМИРОВАННОГО СОСТОЯНИЯ ГОРНОГО МАССИВА  

ПРИ РАЗРАБОТКЕ УГОЛЬНЫХ ПЛАСТОВ  
Исследования напряженно-деформированного состояния техногенно измененного массива горных пород при разработке пластовых 

угольных месторождений целесообразно проводить методами механики сплошных сред, базирующихся как на аналитических решениях, 
так и на данных натурных и лабораторных экспериментов. Аналитические решения предоставляют возможность осуществлять наи-
менее "затратные" эксперименты в широком диапазоне главных факторов и параметров среды. В статье представлен алгоритм и 
программная реализация моделирования напряженно-деформированного состояния пластового угленосного массива. В качестве базовой 
модели принята модель однородного упругого массива. Построение расчетных схем выполнено для условий плоского деформированного 
состояния. Массив горных пород, вмещающий пласт, моделируется как однородный трансверсально-изотропный массив. Определены 
критерии правильности решения, установленные путем проверки граничных условий. С целью решения задачи о распределении напря-
жений в массиве, который моделируется как линейно-деформируемая среда вокруг выработки любой формы поперечного сечения, опре-
делен соответствующий вид отображающей функции единичного круга на контур выработки произвольного сечения. Выполнено гра-
фическое моделирования алгоритма аналитического расчета напряженно-деформированного состояния геологического массива с выра-
боткой произвольной формы. Представлена программная реализация разработанного алгоритма.  
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