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(Рекомендовано членом редакційної колегії д-ром фіз.-мат. наук, с.н.с. І.М. Корчагіним) 
Ціль роботи – створення методів обчислення глибин до границь магнітних аномальних тіл для подальшого їхнього ви-

користання в розв'язку оберненої лінійної задачі магнітометрії (ОЛЗМ ) із більш реальним відтворенням розподілу інтенсив-
ності намагнічування (ІН) в аномальному тілі (AT). 

Обернені задачі магнітометрії сильно некоректні, зокрема, тому що в багатьох випадках отримуються еквівалентні 
розподіли намагніченості, які, хоча й стійкі, але набагато відрізняються від розподілу реальної ІН у масиві гірських порід і не 
дають реальної інформації про будову геологічних структур. З іншого боку, на теоретичних прикладах установлено, що при 
виборі точної геометрії інтерпретаційної моделі (ІМ) та точних значень ІН у початкових умовах, для кожного блоку ітера-
ційними методами отримують точний розв'язок ОЛЗМ. А при малих відхиленнях цих параметрів отримують майже точні 
рішення ОЛЗМ, особливо, при використанні в алгоритмах оптимізації декількох видів уточнюючих ітераційних поправок. Це 
давало авторам цієї статті надію на те, що при різних розмірах моделі, серед результатів інтерпретації можна помітити, 
який розв'язок ОЛЗМ відповідає дійсності. Але ці надії не виправдалися, так як було отримано неперервну зміну ІН при пере-
ході моделі через теоретичну границю тіла. При цьому, деякий час не звертали уваги на зміну інших параметрів ітераційного 
процесу. Згодом було помічено, що при переході границі ІМ через границю теоретичної моделі (ТМ) графік залежності серед-
ньоквадратичної нев'язки (СКН) магнітного поля від глибини до границі AT має специфічну форму. Це дозволяє встановити 
глибини до верхньої чи нижньої границі аномального тіла, а в окремих випадках, і глибини до внутрішніх границь багатоша-
рової моделі, що забезпечує більш продуктивне використання нових методів для інтерпретації реального магнітного поля. 

Ключові слова: магнітометрія, обернена задача, ітераційний метод, ітераційна поправка, критерій оптимізації, нев'язка 
поля, глибина до границі тіла. 

 
Вступ. Для успішних пошуків будь-яких родовищ ко-

рисних копалин багаторазові розв'язки обернених задач 
гравіметрії та магнітометрії з різними значеннями параме-
трів інтерпретаційних моделей є необхідною складовою. 
А з іншого боку, всі вони є некоректними, зокрема, через 
те що прямими чи ітераційними методами, з різними іте-
раційними формулами та критеріями оптимізації інтерп-
ретатори отримують у розв'язках різні значення парамет-
рів для відповідних у просторі елементів ІМ. Але при пе-
ревірці стійкості розв'язків часто виявляється невідповід-
ність: при малих похибках поля в ряді точок, отримують 
великі зміни щільності в блоках, розташованих під цими 
точками [1]. І тому над вирішенням цієї проблеми продов-
жують працювати багато вчених і практиків. Негативні ро-
зв'язки говорять про те, що це питання досить складне, і 
до його повного вирішення ще дуже далеко.При цьому ус-
пішні приклади свідчать, що проблема може бути вирі-
шена як в загальному, так і в конкретному випадках [2, 4].  

Вагомі успіхи були досягнуті після того, як: 1) акад. 
В.Н. Страхов виставив умову: стійкий та геологічно зміс-
товний розв'язок оберненої лінійної задачі (ОЛЗ) граві-
метрії чи магнітометрії (ОЛЗМ) може бути отриманий 
тільки методами умовної оптимізації [6], крім того, для 
розв'язку ОЛЗ він розробив ітераційний метод наймен-
ших квадратів нев'язок поля [6]; 2) акад. В.І. Старостенко 
розробив ітераційну поправку для розв'язків СЛАР [5]; 3) 
П.О. Міненко довів теорему: для стійкого розв'язку ОЛЗГ 
та ОЛЗМ необхідною умовою є рівність площ карти поля 
та проекції інтерпретаційної моделі на карту поля [1]. Ця 
теорема якраз і задовольняє вимоги В.Н. Страхова. 
Вона була використана для розв'язку ОЛЗ ітераційним 
методом найменших квадратів В.Н. Страхова для нев'я-
зок поля П.О. Міненком, який розробив фільтраційний 
ітераційний метод простої ітерації з поправкою В.І. Ста-
ростенка, оптимізуючи мінімум суми квадратів ітерацій-
них поправок до аномальної щільності (АЩ) чи ІН гірсь-
ких порід. В результаті було розроблено оптимізований 
ітераційний метод гарантованого стійкого розв'язку ОЛЗ 
для 2-3-шарової інтерпретаційної моделі, в якій кожен го-

ризонтальний шар щільно упакований блоками, що ма-
ють форму прямокутної напівнескінченної вертикальної 
призми та різну й невідому АЩ чи ІН [1, 2]. Але цей метод 
не гарантує геологічну чи фізичну відповідність отрима-
них розв'язків ОЛЗ значень середньої АЩ чи ІН кожного 
блоку моделі тим значенням АЩ чи ІН гірських порід 
(ГП), які реально попали в об'єм кожного обмеженого по 
вертикалі блоку і створюють майже те ж саме реальне 
поле, для якого розв'язують ОЛЗ. 

Р.В. Міненко на теоретичних моделях установив, що 
для рудно-пошукових задач, при наявності у розрізі вер-
тикально витягнутих АТ, щільність чи ІН яких не зміню-
ється з глибиною, у розв'язку обернених ОЛЗ для 6- 
8-шарових моделей отримуємо майже дворазове змен-
шення АЩ в блоках шостого шару, а в блоках 1-2-го ша-
рів маємо збільшену у півтора рази АЩ, якщо в початко-
вих умовах для ітераційного процесу ми задаємо сере-
дню АЩ усього розрізу. Аналогічні результати дає розв'-
язок ОЛЗМ. При цьому, у проміжках між АТ ми отримуємо 
від'ємні значення АЩ чи ІН у верхній частині розрізу та 
плюсові у нижній. Крім того, сума значень АЩ чи ІН на 
рівні кожного горизонтального шару ІМ майже не зміню-
ється із глибиною. Це дає можливість оцінити середнє 
значення АЩ чи ІН вертикального АТ. Але, разом із тим, у 
нижніх шарах АЩ чи ІН в АТ та у проміжках між ними вирі-
внюється, внаслідок чого у розв'язку ОЛЗ у нижній частині 
розрізу з'являються горизонтальні шари. Якщо ж ми зада-
ємо у початкових умовах нульову АЩ, то для блоків пер-
шого шару ми отримуємо майже реальну АЩ, а для блоків 
6-8-го шарів отримуємо майже в два рази меншу АЩ. Для 
ІН ця різниця ще більша. Уточнення розв'язку ОЛЗГ було 
запропоновано виконувати методичними заходами, вирів-
нюючи початкові умови на другому етапі ітераційного про-
цесу по 2-му чи 3-му шару та використовуючи метод роз-
в'язку ОЛЗ із розробленими для цього ітераційними поп-
равками вищого порядку, які в деяких роботах названі як 
уточнюючі ітераційні поправки [3, 4].  

Незважаючи на те, що всі ці методичні заходи й теоре-
тичні розробки мають емпіричне походження і пояснюють 
причину такого ефекту, вони дозволяють отримати близькі 
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до реальних результати розв'язків ОЛЗ лише в тих випад-
ках, коли відомі глибини до нижніх границь усіх АТ, а іноді, 
й до верхніх. При довільно чи інтуїтивно вибраних грани-
цях АТ отримуються еквівалентні розподіли АЩ чи ІН, які 
змінені пропорційно відношенням об'ємів реальних та мо-
дельних АТ. Таким чином, не завжди, не тільки для реаль-
них, а навіть і для теоретичних полів, забезпечується ви-
ділення у вертикальному напрямі блоків із підвищеними 
чи зниженими АЩ чи ІН. Все це є недоліками існуючих ме-
тодів розв'язків ОЛЗ, а тому треба знайти схеми послідов-
них розв'язків ОЛЗ відносно тих параметрів, зміна яких до-
статньо вказує на те, що нижня границя ІМ перескакує че-
рез нижню границю реального аномального тіла. Бажано 
також, щоб це фіксувалося і на границях зміни фізичних 
властивостей окремих блоків ГП усередині АТ. 

Формулювання цілей статті. Створення методів 
обчислення глибин до границь магнітних аномальних тіл 
для подальшого їхнього використання у розв'язку обер-
неної лінійної задачі магнітометрії із реальним відтво-
ренням розподілу інтенсивності намагнічування в анома-
льному тілі по вертикалі та латералі. 

Виклад основного матеріалу дослідження. Споча-
тку приведемо теоретичний апарат за допомогою якого бу-
демо виконувати необхідні дослідження. Найбільш ефекти-
вним є збіжний ітераційний метод розв'язку оберненої за-
дачі (метод В2 [4]) з критерієм оптимізації мінімуму суми 
квадратів ітераційних поправок Вi до ІН, в якому ітераційні 
формули для ІН гірських порід Ji, нев'язки поля rj та попра-
вки Zi до неї для кожної наступної (n+1 -ої) ітерації виво-
дяться послідовно одна з іншої і мають такий вигляд: 

1 1 ,1i,n+ i,n n+ i ,nJ = J τ B ;-             (1)  

1 1 1,j,n+ j,n n+ j, nr = r τ Z ;-                 (2)  

,1 1 1 ,1i ,n+ i,1,n n+ i ,nB = B τ C- ,                (3)  

де 1n+τ , ,1i ,nB  і т.д. – ітераційний коефіцієнт та ітераційні 

поправки, що обчислюються після кожної попередньої n
-ої ітерації з урахуванням наближеного значення ІН 

1,i,nJ (i = M)  кожного і-того блоку сіткової моделі, отрима-

ного на тій же ітерації; 

,1 /i ,n i,1,n i, j i j,nB = M = (a λ ,r )  – поправка 1-го порядку 
до ІН;                              (4) 

2 ;  0i ij j j ij ij
j i

λ = a λ λ = a ; a > ;"å å            (5) 

( ( ( (2 ;   i ij j j ij ij
j i

λ = a λ λ = a ; a R(i, j);" Îå å  
,1 /i ,n i, j i j,1,nС = (a λ ,Z ); ,1j ,n i, j j,nZ = (a ,r );          (6) 

i, ja  – елементи матриці розв'язків прямої задачі магні-

тометрії для прямокутного паралелепіпеда при одинич-
ній аномальній ІН i,nJ  гірських порід, що представляють 

собою елементи зв'язку в системі лінійних алгебраїчних 
рівнянь між кожною j-тою точкою карти вимірюваного ма-
гнітного поля , 1,a jZ (j = N) й аномальною ІН i,nJ  кожного 

i-того блоку сіткової моделі ;    

,j,n i, j i,n a j jr = (a ,σ ) Z-  – нев'язка поля на попередній 

ітерації.       (7) 
Помножимо скалярно (1) на i, ja  та віднімемо із лівої 

й правої частин ,a j jZ , і з урахуванням (7) одержимо іте-

раційну формулу для нев'язки поля (2) на наступній іте-
рації. Аналогічно, помножимо скалярно (2) на /i, j ia λ  і 

отримаємо ітераційну формулу (3) для поправки 1-го по-
рядку до поправки ,1i ,nB  або 2-го порядку до ІН i,nJ  на 

наступній ітерації.  
Перемножимо скалярно (3) на i, ja  і одержимо ітера-

ційну формулу для поправки 1-го порядку до нев'язки 
поля на наступній ітерації: 

,1 1 1 1,j ,n+ j,1,n n+ j, nZ = Z τ F- ,          (8)  

де 1,j, n ij i,1,nF = (a ,C )  – ітераційна поправка 1-го порядку  (9) 

до поправки ,1j ,nZ  або 2-го порядку до нев'язки j,nr  

на наступній ітерації.  
Далі перемножимо скалярно (8) на /i, j ia λ , одержимо 

ітераційну формулу для поправки 1-го порядку до поправки 

,1i ,nB  або для поправки 2-го порядку до ІН i,nJ  

,1 1 1 ,1i ,n+ i,1,n n+ i ,nС = С τ E- ,           (10) 

де 1, /i, n ij i j,1,nE = (a λ ,F ) – ітераційна поправка1-го по-

рядку        (11) 
до поправки ,1i ,nC  або 3-го порядку до ІН i,nJ на на-

ступній ітерації.  
Перемножимо скалярно (10) на i, ja  і одержимо поп-

равку 1-го порядку до поправки ,1j ,nZ  або 2-го порядку 

до нев'язки поля на наступній ітерації: 

,1 1 1 1,j ,n+ j,1,n n+ j, nF = F τ G- ,          (12) 

де 1,j, n ij i,1,nG = (a ,E )  – ітераційна поправка1-го порядку(13) 

до поправки ,1j ,nF  або 3-го порядку до нев'язки j,nr  

на наступній ітерації.  
Далі перемножимо скалярно (12) на /i, j ia λ  і одержимо 

ітераційну формулу для поправки 1-го порядку до поправки 

,1i ,nC  або для поправки 3-го порядку до ІН i,nJ : 

,1 1 1 ,1i ,n+ i,1,n n+ i ,nE = E τ K- ,           (14) 

де 1, /i, n ij i j,1,nK = (a λ ,G ) – ітераційна поправка1-го по-

рядку        (15)  
до поправки ,1i ,nE  або 4-го порядку до ІН i,nJ на на-

ступній ітерації;  
набір поправок можна продовжити, утворюючи пари 

поправок ( ,1j ,nP , ,1i ,nS ) і т.д. 

Складемо критерії оптимізації, опустивши деякі індекси: 
2

1 1 1, 1 1,( , ) min;r j,n+ j,n n+ j, n j,n n+ j, n
j

F = r = r τ Z r τ Z- - =å   (16) 
2

1, 1 2, 1 3, 1 min;n+ n+ n+(B,B) = (B τ C τ E τ K) =- - -  (17) 
2

1, 1 min;n+(B,B) = (B τ C) =-                   (18) 
2

1, 1 2, 1 min;n+ n+(B,B) = (B τ C τ E) =- -            (19) 
2

1, 1 2, 1 3, 1 min;n+ n+ n+(C,C) = (C τ E τ K τ S) =- - -           (20) 
2

1, 1 2, 1 min;n+ n+(C,C) = (C τ E τ K) =- -            (21) 
2

2, 1 3, 1 min;n+ n+(E,E) = (E τ K τ S) =- -           (22)  
2

2, 1 minn+(E,E) = (E τ K) =-  і т.д.     (23) 

Для критеріїв (16), (18) та (23) ітераційні коефіцієнти 
мають найпростіший вигляд: 

1 /n+ j,n j,n j,n ijnτ = (r ,Z ) (Z ,Z );              (24) 
1, 1 /n+ i,n i,n i,n i,nτ = (В ,С ) (С ,С );                 (25)   

2, 1 /n+ i,n i,n i,n i,nτ = (E ,K ) (K ,K ) .               (26) 
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Більш складний вигляд вони мають для критеріїв (19), (21), (22). Для (19): 
 1, 1 ( )( ) ( )( ) /n+ i,n i,n i,n i,n i,n i,n i,n i,nτ = ( В ,С E ,E E ,С E ,B ) T;-                (27)   

2, 1 ( )( ) ( )( ) /n+ i,n i,n i,n i,n i,n i,n i,n i,nτ = ( C ,С E ,B B ,С E ,C ) T;-                (28) 

( )( ) ( )( ).i,n i,n i,n i,n i,n i,n i,n i,nT C ,С E ,E E ,С E ,C= -  

Для (21): 

1, 1 ( )( ) ( )( ) /n+ i,n i,n i,n i,n i,n i,n i,n i,nτ = ( E ,С K ,K K ,С E ,K ) T;-            (29)   
2, 1 ( )( ) ( )( ) /n+ i,n i,n i,n i,n i,n i,n i,n i,nτ = ( C ,K E ,E E ,С E ,K ) T;-              (30) 

( )( ) ( )( ).i,n i,n i,n i,n i,n i,n i,n i,nT K ,K E ,E E ,K E ,K= -  
Для (22):  

2, 1 ( )( ) ( )( ) /n+ i,n i,n i,n i,n i,n i,n i,n i,nτ = ( E ,K S ,S K ,S E ,S ) T;-              (31)   
3, 1 ( )( ) ( )( ) /n+ i,n i,n i,n i,n i,n i,n i,n i,nτ = ( S ,K K ,E E ,S K ,K ) T;-                 (32) 

( )( ) ( )( ).i,n i,n i,n i,n i,n i,n i,n i,nT K ,K S ,S S ,K S ,K= -  
 

Для інших формул ітераційні коефіцієнти отримані рі-
шенням систем трьох лінійних алгебраїчних рівнянь. 
Програмна реалізація методів (16)-(26) виконана для те-
оретичних магнітних полів (рис. 1), а також для полів, ви-
мірюваних у межах ДДЗ (рис. 2). 

Тепер перейдемо до аналізу рішень ОЛЗМ, отриманих 
у попередніх роботах для одношарової сітково-блокової ін-
терпретаційної моделі (СБІМ) із 20х20 блоків методом про-
стої ітерації В2 за критерієм оптимізації поправок (18) із од-
нією поправкою 1-го порядку в ітераційній формулі (3). 
Якщо блоки інтерпретаційної моделі мають одні й ті ж роз-
міри і глибину залягання, що й теоретична модель (ТМ), для 
якої обчислене магнітне поле (МП), то, незважаючи на не-
повністю відновлене поле (тобто, нев'язка поля ще не дорі-
внює нулю), розв'язок ОЛЗМ має таку ж ІН кожного блоку, 
як і в ТМ. Якщо ж блоки СБІМ з меншою висотою розташо-

вані всередині ТМ, то в розв'язку ОЛЗМ ІН може бути біль-
шою. При розміщені блоків СБІМ майже таких же розмірів, 
що й блоки ТМ, нижче блоків ТМ отримуємо в розв'язку 
ОЛЗМ ІН кожного блока набагато більшу, ніж у ТМ. Якщо ж 
СБІМ знаходиться повністю або частково вище блоків ТМ, 
то, в залежності від висоти тих чи інших блоків, ІН блоків у 
розв'язку ОЛЗМ може бути меншою, ніж у блоків ТМ. Таким 
чином, для одного і того ж поля розподіли ІН блоків наба-
гато відрізняються. Це явище називається еквівалентним 
перерозподілом ІН. Із цього треба зробити висновок, що 
для розв'язку ОЛЗМ треба точно знати глибини до верхніх і 
нижніх границь блоків. І навпаки, для розв'язків нелінійної 
ОЗМ треба знати ІН блоків, щоб знайти глибину до них. 
Практично останнє зробити дуже важко, а тому обчислю-
ють середній скачок ІН на границі двох шарів і обчислюють 
глибини до кожного блоку СБІМ.  

 
а                     б 
 

  
в       г 

Рис. 1. Результати розв'язків ОЛЗМ для 3-шарової теоретичної моделі:  
а – карта МП від двох аномальних тіл, які мають розрив по вертикалі (тут і далі: поле в 1 од.–10 нТл; відстані в 1 од. – 0.5 км);  

б-г – Карти ІН 1-3-го шару (тут і далі: ІН в 1 од. – 8 мА/м; відстані в 1 од. – 1.15 км) 
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Далі перейдемо до аналізу рішень ОЛЗМ, отриманих 
для 2-шарової СБІМ із 20х20 блоків у кожному шарі тим 
же методом простої ітерації (18), за тим же критерієм оп-
тимізації і для того ж МП. Тут для одного і того ж поля ми 
отримали зовсім інший розподіл ІН у розв'язку ОЛЗМ: ІН 
блоків 1-го шару СБІМ приблизно на 20% вища, а у дру-
гому шарі – приблизно на 30% нижча, ніж у блоків ТМ. 

Для 3-шарової СБІМ і того ж поля від ТМ маємо у ро-
зв'язку ОЛЗМ розподіл ІН шарів з відхиленням від +20 до 
–33%, який нічим не відрізняється від розподілу для 2-
шарової СБІМ. І нарешті, для 6-шарової СБІМ при тому 
ж полі ТМ маємо в розв'язку ОЛЗМ розподіл ІН шарів з 
відхиленням від +33 до –40%, який значно більше відрі-
зняється від розподілу для 2-3-шарових СБІМ. Оскільки 
залишки поля по всій карті розподілені майже рівномі-
рно, то марно сподіватися на покращення розподілу ІН 
при збільшенні кількості ітерацій, що і було підтверджено 
разом із зменшенням середньо-квадратичної нев'язки 
МП до 0.1715 нТл.  

Маючи на увазі, що реальний розподіл ІН знахо-
диться по висоті приблизно на середині АТ, було вико-
ристано результати розв'язку ОЛЗМ методом В2 в яко-
сті початкових умов (ПУ) для розв'язку ОЛЗМ на дру-
гому і подальших етапах. Для цього в ПУ присвоєно 
всім шарам значення ІН одного, наприклад, 3-го шару, 

тобто вирівняно ПУ по ІН 3-го шару, а потім виконано 
таку ж кількість ітерацій методом з уточнюючими ітера-
ційними поправками (УІП), наприклад, методом (17). 
Але одним прийомом вирівнювання ПУ близький до ре-
ального розв'язок ще не досягається. А тому, ще за 3-5 
заходів по 50-100 ітерацій потрібне було досягнуто при 
значно зниженій середньо-квадратичній нев'язці поля. 
Відмітимо, що при вирівнюванні ПУ ми задаємо неточні 
дані, а оптимізаційний метод з УІП доводить розв'язок 
ОЛЗГ до реального розподілу, тобто ми маємо автома-
тизовану модифікацію розв'язку оберненої задачі відо-
мим способом підбору. Таким чином, по додатковому 
рішенню з уточнюючими ітераційними поправками у 
всіх шарах моделі ми отримуємо розподіл ІН, який збі-
гається з розподілом ІН в аномальних тілах ТМ, а в ін-
ших вертикальних розрізах ми маємо вертикальну ша-
руватість гірських порід, ускладнену в багатьох місцях 
будь-якими вигинами контактів, які контролюються від-
повідними їм вигинами ізоліній поля. Це означає, що ос-
новною причиною зменшення ІН у розв'язку ОЛЗМ із 
глибиною є відсутність управління розподілом нев'язки 
поля на кожній ітерації в кожній точці при перетворенні 
її в ітераційну поправку для всіх блоків СБІМ, які знахо-
дяться під точкою поля.  

 

 
а                     б 
 

  
в                 г 

 
Рис. 2. Результати розв'язків ОЛЗМ по теоретичному полю для 3-шарової моделі (рис. 1): 

а – карта реального магнітного поля частини дільниці Великі Мости (ДДЗ);  
б-г – карти ІН 1-3-го шару слабо намагнічених гірських порід кристалічного фундаменту 

 
Як показали експерименти, апарату мінімізації квад-

ратичного функціоналу недостатньо для точного дозу-
вання блоків моделі долями ІН, перетвореної поправкою 

В.І. Старостенка [5] із нев'язок поля. Не дали позитив-
ного результату й методи з виділенням для кожного шару 
ітераційного коефіцієнта з ітераційною поправкою. Але 
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пізніше було помічено, що найменша нев'язка магнітного 
(гравітаційного) поля після виконання розв'язку ОЛЗ на 
ряді ітерацій досягається тоді, коли глибина Н до границі 
реального АТ співпадає з його границею в ІМ. Але, іноді, 
при зміні положення границі АТ отримували максимуми 
нев'язки поля (НП), або мінімуми для одних та макси-
муми для інших границь одного або й різних АТ. При 
цьому коливання їхніх значень були незначними, але ча-
стіше закономірними, ніж випадковими. Деталізація гра-
фіка r=f(Н) доводить більш згладжений його вигляд, ніж 
випадково пульсуючий. Тому була поставлена задача 
перевірити більш детально поведінку цього графіка при 
зміні глибини до однієї границі тіла при постійній (реаль-
ній або невідомій) глибині до його іншої границі. Анало-
гічні дослідження виконані для вивчення розподілу аси-
метрії та ексцесу НП при зміні Н. Але в цій роботі будуть 
приведені результати досліджень залежностей r=f(Н). 
Спочатку було виконано попередні дослідження на тео-
ретичних моделях для одного АТ. Потім – для реального 
МП південної частини Петровського залізорудного родо-
вища, де глибина до його нижньої та верхньої границь 
відома. Потім дослідження були виконані для сіткової те-

оретичної моделі цього родовища з прямокутними приз-
матичними блоками, але з реальним полем. Розв'язками 
ОЛЗМ були обчислені глибини до границь АТ, які відпові-
дають геологічним, установленим по результатам бу-
ріння свердловин.  

Далі було проведено дослідження з реальним магні-
тним полем над горизонтально шаруватим масивом не-
магнітних осадочних порід, які перекривають кристаліч-
ний фундамент з породами невисокої намагніченості на 
глибинах від 1.8 до 4.5 км. У верхньому лівому куті карти 
МП була вибрана магнітна аномалія інтенсивністю від 
400 до 700 нТл. Описаним вище методом було встанов-
лено, що фундамент складений трьома шарами. Два із 
них намагнічені, а середній між ними – майже немагніт-
ний. Границі магнітних шарів знаходяться на глибинах 
1.8–5.0–9.0–13.0 км. Далі було взято теоретичну модель 
з такими ж глибинами та з ІН: J1=20; J2=0; J3=20 x8 мА/м 
і виконано розв'язок ОЛЗМ для даної моделі з ПУ для ІН, 
пропорційними середній інтенсивності поля над кожним 
блоком (рис. 1). Отримали НП. Потім збільшили глибину 
до тіла на величину її приросту h і виконали розв'язок 
ОЛЗМ вже при новій глибині до тіла Н1=1,8+h км, а гли-
бини до інших границь АТ залишили без зміни. Отримали 
нове значення НП.  

 

Таблиця  1. Середні нев'язки теоретичного магнітного поля після розв'язків ОЛЗ  
при різних зміщеннях однієї границі сітки для аномальних тіл в ІМ 

Приріст 
глибини h, км 

Нев'язка магнітного поля Re, в нТл х10 та вид її екстремума 
При змінній Н2=13+h і постійній Н1 При змінній Н1=1.8+h і постійній Н2 

Н1=1.8 км Н1=5 км Н1=9 км Н2=5 км Н2=13 км 
– 0.2 0.03682     
– 0.1 0.03715 2.06780 max 3.71661 0.02846 0.02978  
– 0.075 0.03877   0.10684 max  
– 0.05 0.03909 max 2.02364 min 4.02862 max 0.05003 0.03228 
– 0.025 0.03807 min 2.03292 3.17540 min 0.04024 min  
– 0.0125 0.03897  2.05198   0.03771 max 
– 0.006 0.03930 max 2.05644 max 3.50751  0.03694 min 
  0 0.03926 min 2.04317 min 3.64265 max 0.04622 max 0.03926 max 
  0.006 0.03931 max 2.06704 max 3.51761  0.03885 min 
  0.0125 0.03808 min 2.01859 min 3.28569 min  0.04024 
  0.025 0.03812 max 2.03185 max 3.53253 max 0.03999 min  
  0.05 0.03806 min 2.01674 3.24862 0.04430 0.04708  max 
  0.075 0.03807   0.13137 max  
  0.1 0.03863 max 2.04405 3.73745 0.04400  
  0.2 0.03736     

 
Повторили розв'язок ОЛЗМ для інших приростів h і 

обчислили нові значення НП, які закономірно відрізня-
ються між собою. Теж саме виконали при зміні глибини 
до другої границі при незмінному положенні інших гра-
ниць АТ. Далі зробили теж саме для третьої та 4-ої гра-
ниць АТ. При ІН, заданих в ПУ, та відомих глибинах до 
блоків, розв'язок ОЛЗМ має практично точні середні зна-
чення ІН для кожного блоку ІМ з коливаннями: для 1-го 
шару – 5%, для 2-го – 1.25% і для 3-го –10% над АТ та не 
більше 5% за межами АТ, що значно перевищує показ-
ники інших відомих методів.  

Установивши характер зміни НП при зміні h, автори 
прийшли до висновку, що метод для деяких глибин неза-
довільно розділяє нев'язки поля по інтенсивності або 
має слабку роздільну здатність при зміні глибини до гра-
ниці АТ. А тому перейшли до використання одношарових 
ІМ (табл. 1). Спочатку взяли модель із змінною 
Н2=13+h км і постійною Н1=1.8 км. Отримали 
НП=0.3926 нТл для h =0. Далі одержали їх при інших 

приростах h. Наприклад, при h=+0.2 км отримали 
НП=0.3736 нТл. Як можна побачити, маємо чергування 
екстремумів, які дуже точно виділяють глибину до гра-
ниці. Встановлено також форму графіка кривої r=f(Н), 
яка має дуже вузький мінімум при точній границі, два ма-
ксимуми та два мінімуми при зміні приростів глибин від -
25 до +12 м на абсолютній глибині 13 км. Але це прояв-
ляється тільки тоді, коли ми знаємо точне положення 
границі. При великій висоті блоків нижню границю АТ ви-
ділити по зміні величини НП важче, ніж верхню. Для вну-
трішніх границь центральний мінімум майже зникає, два 
максимуми майже зливаються, зате обидва бокові міні-
муми значно ширші й несиметричні. Таким чином, на те-
оретичній моделі з теоретичним полем глибини розмі-
щення границь неоднорідного АТ наведений метод пра-
цює. Далі було виконано усі процедури метода для опи-
саного вище реального магнітного поля (табл. 2). Отри-
мали дещо ускладнені результати. 
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Таблиця  2. Середні нев'язки реального магнітного поля після розвязків ОЛЗ  
при різних зміщеннях однієї границі сітки для аномальних тіл в ІМ 

Нев'язка магнітного поля Re, нТл х10 та вид її екстремума 
Приріст 
глибини 

h, км 

При Н2=13+h 
і постійній Н1 

При Н2=5+h 
І постійній Н1 

При Н1=1.8+h  і 
постійній Н2 

При Н1=1.8+h 
і постійній Н2 

При Н2=13+h 
і постійній Н1 

Н1=1.8 км Н1=7.8км Н1=1.8 км Н2=13 км Н2=5.02 км Н2=5 км 
– 0.6 
– 0.4 
– 0.3 
– 0.2 

 
 
 
0.04596 

2.57 
 
2.90max 

 
0.036 
 
0.031 min 

 
 
 
0.05492 

 
 

 

– 0.1 0.04810 max 2.84 min 0.039 max  0.05512 max 0.024 0.26243  
– 0.075 0.04578      
– 0.05 0.04558 min 2.95 max 0.036 0.05441 min 0.039 max 0.29428 max 
– 0.025 0.04588  0.033 min   0.29307 
– 0.0125 0.04717 max   0.05529 max  0.29055 min 
– 0.006 
 –0.004 
–0.002 
–0.001 
–0.0005 

0.04417 min 
0.04763 
0.04892 max 
0.04522 

  0.05508 min 
 
0.05520  
0.05540 
0.05546 

 0.31005 max 
 
0.28398 
0.25563 min 
0.29397 max 

  0 0.04426 min 2.88 min 0.040 max 0.05550 0.037 min 0.26389 min 
0.0005 
 0.001 
0.002 
0.004 
0.006 

0.04909 max 
0.04387 min 
0.05077 max 
0.04660 

  0.05554 
0.05557 
0.05562 max 
 
0.05521 min 

 0.30871 max 
0.29208 
0.28898 min 
 
0.29064  

 0.0125 
 0.02 

0.04577 min   
0.038 min  

0.05552 
 

 0.054313 

0.025 0.04625  0.040   0.58776 max 
  0.05 0.04812 max 3.33 max 0.045 max 0.05568 0.047 max 0.27296  
 0.075 0.04632      
  0.1 0.04619 min 2.91 0.032 min 0.05575 max 0.041 0.24336 
  0.2 
  0.3 
  0.6 

0.04892  
2.88 min 
3.03 

0.035 0.05466   

Але реально, за цими графіками впевнено можна 
знайти усі горизонтальні границі розподілу АТ за магніт-
ними властивостями. Наприклад, нижню границю АТ на 
глибині Н2 =13 км легше виявити за допомогою одноша-
рової ІМ при Н2=13+h км та Н1=5–7.8 км, ніж при 
Н1=1.8 км. Границя на глибині Н1=1.8+h значно легше 
знаходиться при Н2=5.02 км, ніж при Н2=13 км. Границя 
Н2=5+h км – при Н1=1.8 км, ніж з моделлю при Н1=5+h км 
та Н2=13 км. Разом із тим, приведені в табл. 2 дані також 
мають ваду: усі ІМ прив'язані до однієї границі АТ. А тому 

для іншого експерименту вибрали одношарову ІМ з пос-
тійною висотою блоків (табл. 3). Цей метод не залежить 
від прив'язки моделі до границі АТ, бо обидві границі АТ 
для кожного розв'язку ОЛЗМ просувалися по вертикалі 
зверху й донизу на однаковий приріст глибини h. В ре-
зультаті отримано метод з більшою роздільною здатні-
стю як по інтенсивності зміни НП, так і по шкалі глибин 
до границь АТ. Але й у нього є й недоліки. Центральний 
мінімум для деяких границь АТ зміщується на кілька ме-
трів в сторону АТ. 

 

Таблиця  3. Середні нев'язки реального магнітного поля після розвязків ОЛЗ  
при різних зміщеннях двох границь сітки для аномальних тіл в ІМ 

Нев'язка магнітного поля Re, в нТл х10 та вид її екстремума 
Приріст глибини 

h, км 
При 

Н2=4+h і Н1=1.8+h 
Приріст 

Глибини h, км 
При 

Н2=5+h і Н1=2.8+h 
Приріст 

Глибини h, км 

При 
Н2=10,5+h і Н1=9+h 

-0.2 0.186 -0.15 0.075 max -0.05 0.738 max 
-0.015 0.146 min -0.075 0.069 min -0.01 0.679 min 
-0.0075 0.161 max -0.02 0.097 max -0.001 0.945 max 
 0.0 0.153  0.0 0.063 min  0.0 0.706 min 
 0.0025 0.151 min  0.01 0.076 max  0.0025 0.946 max 
 0.075 0.165 max  0.05 0.066 min  0.01 0.696 min 
 0.2 0.129  0.2 0.081 max  0.025 1.204 max 

 

Принципового значення для визначення глибини до 
границі цей факт не має, але він має важливе значення 
для ідентифікації самої границі, встановлення її наявно-
сті. А тому, треба використовувати всі приведені тут ме-
тоди, порівнювати отримані результати й виконувати за-
ключний розв'язок ОЛЗМ (рис. 2–3). 

Як бачимо, верхня частина кристалічного фундаме-
нту до глибини 13 км має 3-шарову структуру, в якій два 

магнітні шари розділені одним немагнітним. Наведеним 
методом дослідження були проведені до глибини 17 км. 
На всіх трьох розрізах намагніченості маємо подібні риси 
геологічної будови на даній дільниці. В четвертому шарі 
нових границь не виявлено. Але від'ємна ІН 2-го шару, 
свідчить про те, що постійний фон МП не враховано, а 
тому ІН усіх шарів може бути більшою.  
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Рис.3 (продовження). Результати розв'язків ОЛЗМ по реальному полю для 3-шарової моделі (рис. 2): 
а-в – вертикальні розрізи ІН 1-3-го шару слабо намагнічених гірських порід кристалічного фундаменту  

по лініях блоків 6, 10, 15 (рис. 2, г) 
 

Висновки і перспективи подальших досліджень у 
даному напрямку. Створено методи обчислення глибин 
до границь магнітних масивів для ітераційних лінійних ме-
тодів рішення обернених задач, де використовуються до-
даткові уточнюючі ітераційні поправки вищого порядку для 
одержання більш достовірних результати інтерпретації 
даних магнітометрії для некомпактних геологічних маси-
вів. Необхідно перевірити розроблені методи на їхню зда-
тність вирішувати подібні задачі для детальних полів з 
аномальними тілами значно менших розмірів.  
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THE METHOD OF DETERMINING OF DEPTHS TO BORDERS OF THE ANOMALOUS ROCK MASSIFS  
BY THE STABLE SOLUTION OF THE LINEAR INVERSE PROBLEMS OF THE MAGNETIC FIELD 

The aim of this work is to create a method for calculating the depths to the boundaries of magnetic anomalous bodies (MAB) for their use in 
solving the inverse linear magnetometry problem (LIPM) with more realistic reproduction of the magnetization intensity distribution (DM) in MAB. 

The inverse magnetometry problems are strongly incorrect, in particular, because in many cases equivalent magnetization distributions are 
obtained which, although stable,but are much different from the distribution of real DM in the rock mass and do not provide real information 
about the geological structure of this massif. On the other hand, it was established by theoretical examples that when choosing the exact 
geometry of the interpretational model (IM) and the exact values of the DM in the initial conditions, exact solutions of the LIPM are obtained 
immediately by iterative methods for each block. And for small deviations of these parameters, almost exact solutions of LIPM are obtained, 
especially when using several types of refinement iterative corrections in optimization algorithms. This gave the authors of this article hope that, 
at different sizes of the model, among the results of the interpretation one can see, which decision of the LIPM is true. But these intentions were 
not justified, since we received continuous changes in the DM when the boundary of the model jumped through the boundary of the theoretical 
body. For a while, we did not pay attention to the changes of other parameters of the iterative process.Eventually, it was noticed that when moving 
the boundary of the interpretational model across the border of the theoretical model, the graph of the curve of the root from the mean square of 
residuals of the magnetic field has a specific shape.This allows us to set the depths of the upper or lower boundary of the anomalous body, and 
in some cases, the depths of the inner boundaries of the multilayer model, which provide a more productive use of the developed method for 
interpreting the actual magnetic field. 

Key words: magnetometry, inverse problem, iterative method, optimization criterion, field discrepancy, depth of body boundary location. 
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МЕТОД ОПРЕДЕЛЕНИЯ ГЛУБИН ДО ГРАНИЦ АНОМАЛЬНЫХ МАССИВОВ УСТОЙЧИВЫМИ РЕШЕНИЯМИ  
ОБРАТНЫХ ЛИНЕЙНЫХ ЗАДАЧ МАГНИТОМЕТРИИ  

Цель работы – создание метода вычисления глубин до границ магнитных аномальных тел (АТ) для их использования при решении 
обратной линейной задачи магнитометрии (ОЛЗМ ) с более реальным воспроизведением распределения интенсивности намагничива-
ния (ИН) в АТ. 

Обратные задачи магнитометрии сильно некорректны, в частности, из-за того, что во многих случаях получаются эквивалент-
ные распределения намагниченности, которые, хотя и устойчивы, но намного отличаются от распределения реальной ИН в массиве 
горных пород и не дают реальной информации о строении геологических структур. С другой стороны, на теоретических примерах 
установлено, что при выборе точной геометрии интерпретационной модели (ИМ) и точных значений ИН в начальных условиях, для 
каждого блока итерационными методами получают точные решения ОЛЗМ. А при малых отклонениях этих параметров получают 
почти точные решения ОЛЗМ, особенно, при использовании в алгоритмах оптимизации нескольких видов уточняющих итерационных 
поправок. Это давало авторам статьи надежду на то, что при разных размерах модели среди результатов интерпретации можно 
заметить, какое решение ОЛЗМ соответствует действительности. Но это допущение не подтвердилось, так как были получены 
непрерывные изменения ИН при переходе границы ИМ через границу теоретической модели АТ. При этом, некоторое время не прини-
мали во внимание смену других параметров итерационного процесса. Но в последствии было подмечено, что при переходе границы ИМ 
через границу теоретической модели (ТМ) АТ график зависимости среднеквадратичной невязки (СКН) магнитного поля от глубины 
залегания границы АТ имеет специфическую форму. Это позволило установить глубины до верхней и нижней границ АТ, а в отдельных 
случаях, и глубины к внутренним границам многослойной модели, что обеспечивает более продуктивное использование разработан-
ного метода для интерпретации реального магнитного поля. 

Ключевые слова: магнитометрия, обратная задача, итерационный метод, критерий оптимизации, невязка поля, глубина располо-
жения границы тела. 




