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THE STATISTICAL SIMULATION OF RANDOM FIELDS WITH THE GAUSSIAN TYPE 
CORRELATION FUNCTION BY THE INVESTIGATION OF THE MAGNETOMETRY DATA 

 
(Представлено членом редакційної колегії д-ром геол. наук, ст. дослідником О.І. Меньшовим) 
In the article, universal methods of statistical modeling (Monte Carlo methods) of geophysical data using the Gaussian correlation 

function have been developed, which make it possible to solve the problems of generating adequate realizations of random fields on a 
grid in three-dimensional space of required regularity and detail. Since in geophysics, most of the results of object research are presented 
in digital form, the accuracy of which depends on various random influences, the problem of the condition of the maps arises in the case 
when the data cannot be obtained with the specified detail in some observation areas. It is proposed to apply statistical simulation of 
random fields methods, to solve the problems of conditional maps, supplement the required detail of research results with additional data, 
to achieve the required accuracy of observations, and other similar problems in geophysics. An algorithm for numerical modeling of 
realizations of homogeneous isotropic random fields in three-dimensional space with a Gaussian correlation function is formulated on 
the basis of the theorem on estimation of the mean-square approximation of such random fields by the partial sum of the "spectral 
decomposition" series. Using the example of data from aeromagnetic surveying in the area of the Ovruch depression, the proposed 
algorithm for statistical modeling of random fields is implemented in solving the problems of map fitness by supplementing the data with 
simulated adequate implementations to the required level of detail. When analyzing data by profiles, they are divided into deterministic 
(trend) and random components. The trend is proposed to approximate by cubic splines and the homogeneous isotropic random 
component is proposed to modeling on the basis "spectral decomposition" of random fields on 3-D space in the Ovruch depression. 
According to the algorithm, authors received random component implementations on the study area with twice detail for each profile. 
When checking their adequacy, authors made the conclusions that the relevant random components histogram has Gaussian distribution. 
The built variogram of these implementations has the best approximation by theoretical variogram which is connected to the Gaussian 
type correlation function. As a result of superimposing the simulated array of the random component on the spline approximation of the 
real data, a more detailed implementation was obtained for the data of geomagnetic observations in the selected area. A comparative 
analysis of the results of modeling realizations random fields with the Gaussian correlation function with other correlation functions is 
carried out. Therefore, the method of statistical modeling of realizations of random fields in three-dimensional space with the Gaussian 
correlation function makes it possible to supplement the results of measurements of the full magnetic field intensity vector with data with 
a given detail as much as possible. 

 
K e y w o r d s :  Statistical simulation, spectral decomposition, a Gaussian correlation function, conditional maps. 
 
Background 
The tasks of random fields statistical simulation arise 

solving the actual geophysics problems. The statistical 
simulation of random fields method is used to solve the 
problems of conditional maps, supplement the required 
detail of research results with additional data, to achieve the 
required accuracy of observations, and other. A special care 
is necessary for reduction of calculations, amount of which 
rapidly grow together with the dimension of the argument of 
the random field in this case. Many different approaches 
related to the solving of problems of random fields statistical 
simulation were described in a lot of papers, for example 
(Chiles, Delfiner, 2012; Vyzhva, 2011, 2021; Vyzhva et al., 
2020a, 2020b, 2020c; Tolosana-Delgado, Mueller, 2021; 
Wackernagel, 2003). 

It is proposed in the papers (Vyzhva et al., 2012, 2010; 
Vyzhva, Z., Vyzhva, A., 2016) to apply methods of 
statistical simulation of realizations of random fields on the 
plane (2-D space), to solve the problems of conditional 
maps, adding of data to achieve the necessary precision, 
and other similar problems in geophysics. Example for 
modeling is magnetometry data in those works. But the 
magnetometry data was investigated on 3-D space. It is 
divided into deterministic (trend) and random components 
for 3-D data analysis. The trend is proposed to 

approximate by cubic splines. The stationary random 
component of magnetometry data to modeling on the basis 
of spectral decomposition" of 3-D random fields with the 
Gaussian correlation function is proposed in this paper. 
The algorithm of statistical simulation of homogeneous 
isotropic random fields with this type correlation function 
on the 3-D space using approximations theorems is 
considered. Applying the above method makes it possible 
to supplement the missing magnetometry data in the study 
area with greater accuracy than in the paper (Vyzhva et al., 
2018a) with the Bessel type correlation function. 

There has been an introduced random field statistical 
simulation based on spectral representation in order to 
enhance map accuracy by the example of aeromagnetic 
survey data in the Ovruch depression. 

Denote, that methods of statistical simulation of random 
field on 3-D space based on representation of it by 
stochastic sums was considered in papers example (Chiles, 
Delfiner, 2012; Vyzhva, 2003, 2011; Vyzhva et al., 2013, 
2018a) and other. 

The spectral representation of homogeneous isotropic 
random fields on 3-D space.  

A real-valued homogeneous isotropic random field ξ(𝑟,θ,φ) authors consider on 3-D space (𝑟, θ,φ – spherical 
coordinates). On 3-D Euclidean space Rଷ, square-mean 
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homogeneous isotropic random field ξ(𝑟, θ,φ), which is 
continuous real-valued admit the spectral decomposition by 
spherical harmonics this result was obtained earlier 
(Yadrenko,1983; Vyzhva, 2003, 2011). This "spectral 
decomposition" is the sum: 𝛏(𝒓,  𝛉,  𝛗)   =   с𝟑 ∑  ∑  𝛓𝒎𝒍 (𝒓) 𝒎𝒍ୀି𝒎ஶ𝒎ୀ𝒐 𝑺𝒎𝒍 (𝛉,  𝛗), (1) 
where the constant сଷ = √2π, random processes ς௠௟ (𝑟) are 

integrals: ς௠௟ (𝑟) = ׬  ௃೘శభమ(஛௥)(஛௥)భమ  ஶ଴ 𝑍௠௟ (𝑑λ), (2) 

where 𝐽௠ାభమ(λ𝑟) is the Bessel function of the first kind of order 𝑚 + ଵଶ and {𝑍௠௟ (. )} are the sequence of orthogonal random 
measures on Borel subsets from the interval [0,+∞), i. e.  𝐸𝑍௠௟ (𝑆ଵ) 𝑍௠ᇲ௟ᇲ (𝑆ଶ) = δ௟௟ᇲδ௠௠ᇲΦ(𝑆ଵ ∩ 𝑆ଶ), 
for any Borel subsets 𝑆ଵ and 𝑆ଶ, here δ௠௠ᇲ is Kronecker 
symbol, Φ(λ) is the bounded nondecreasing function  
(so-called "spectral function") and the spherical harmonics  𝑆௠௟ (𝑥) are the product of functions: 𝑺𝒎𝒍 (𝛉,𝛗) = с෤𝒎,𝒍 𝑷𝒎| 𝒍 |(𝐜𝐨𝐬𝛉)𝒆𝒊𝒍𝛗, 
where 𝑷𝒎𝒍 (𝒙) are associated Legendre functions of degree 𝒎, с෤௠,௟ = ଵଶ ට௩೗గ  (௠ ି ௟)!(௠ ା ௟)! (2𝑚 + 1), (3) 𝜈௟ = ൜1, 𝑙 ≠ 0,2, 𝑙 = 0. 

On 3-D area authors are considering the correlation 
function 𝑩(𝛒)  of the homogeneous isotropic random field 𝛏(𝒓,𝛉,𝛗) which depends on distance 𝝆 between the vectors 𝒙,𝒚 ∈ 𝐑𝟑: 𝒙 = (𝒓𝟏,𝛉𝟏,𝛗𝟏), 𝒚 = (𝒓𝟐,𝛉𝟐,𝛗𝟐), 𝛒 = 𝒓ඥ 𝟐(𝟏 −  𝐜𝐨𝐬𝛙) = 𝒓 𝐬𝐢𝐧(𝛙/𝟐), 
where 𝐜𝐨𝐬𝛙 is angular distance between vectors 𝒙,𝒚 ∈ 𝐑𝟑: 𝐜𝐨𝐬𝛙 = 𝐜𝐨𝐬𝛉𝟏𝐜𝐨𝐬𝛉𝟐 + 𝐬𝐢𝐧𝛉𝟏𝐬𝐢𝐧𝛉𝟐𝐜𝐨𝐬 (𝛗𝟏 − 𝛗𝟐). 

It may by presented (Vyzhva, 2003) as an integral: 𝐵(ρ) = ට஠ଶ ׬   ௃భమ(஛஡)ඥ஛஡ஶ଴ 𝑑Φ(λ), (4) 

where 𝐽భమ(𝑧) is the Bessel function of the first kind of order 1/2, Φ(λ) is "spectral function", ρ is distance between the 
points 𝑥, 𝑦 ∈ Rଷ: 𝑥 = (𝑟ଵ, θଵ,φଵ), 𝑦 = (𝑟ଶ,θଶ,φଶ). 

Authors obtain the variances of random processes 𝛓𝒎𝒍 (𝒓) as: 𝑏௠(𝑟) = 𝑉𝑎𝑟 𝜍௠௟ (𝑟)  = 𝐸ห𝜍௠௟ (𝑟) หଶ, 𝑙 =  1, 2, . . . ,ℎ (𝑚, 3). 
Then authors have the formulas for coefficients 𝒃𝒎(𝒓) as 

an integral: 𝑏௠(𝑟) = ׬  ௃೘శభమమ (஛௥)஛௥ஶ଴ Φ(𝑑λ),  𝑚 = 0,1, . . . . (5) 

Authors will call the coefficients 𝒃𝒎(𝒓) (which depends on 
spherical radius 𝒓) as  
"spectral coefficients". These coefficients are defined by the 
соrrelation function 𝑩(𝛒) of the homogeneous isotropic 
random field in the way: 𝑏௠(𝑟) = 2π׬ 𝐵(ρ)஠଴ 𝑃௠(cosψ) sinψ 𝑑ψ. (6) 
The variance of random field 𝛏(𝒓,𝛉,𝛗) authors obtain by this 
as the sum: 𝐸ξଶ(𝑟, θ,φ) = 𝑉𝑎𝑟 ξ(𝑟,θ,φ) = π/2∑ (2𝑚 + 1)𝑏௠(𝑟)ஶ௠ୀ଴ .   (7) 

However, is used the "spectral decomposition" of 
homogeneous isotropic random field оn 3-D space by 
solution statistical simulation problems of those random 
field's realizations and in this sum figurate real-valued 
random processes, which are real-valued random variables 
by fixed spherical radius 𝒓. Let adduce that decomposition 
in the Theorem 1. The following statement is true. 

Theorem 1. Let ξ(𝑟, θ,φ) is a mean square continuous 
realvalued homogeneous isotropic random field in 3-D 
space with zero mean. Then this random field admits 
(Vyzhva, 2011) the following "spectral decomposition": ξ(𝑟, θ,φ) = = ∑  ∑ с෤௠,௟௠௟ୀ଴ஶ௠ୀ଴ 𝑃௠௟ (cosθ)[ς௠, ଵ௟ (𝑟) cos 𝑙φ + ς௠, ଶ௟ (𝑟) sin 𝑙φ]  (8) 
where 𝑃௠௟ (𝑥) are associated Legendre functions of degree 𝑚, ൛ς௠, ௞௟ (𝑟)ൟ, 𝑘 = 1, 2 are random velues sequences of 
random processes ς௠௟ (𝑟) as an integral (2), such that 
satisfying the following conditions: 𝛭ς௠, ௞௟ (𝑟) = 0; (9)   𝛭ς௠, ௞௟ (𝑟) ς௠ᇲ, ௞ᇲ௟ᇲ (𝑟) = δ௟௟ᇲδ௠௠ᇲδ௞௞ᇲ𝑏௠(𝑟). (10) 
In (10)  δ௣௣ᇲ is Kronecker symbol, с෤௠,௟ are constants 
sequences, which calculated by the formula (3), and 𝑏௠(𝑟) 
are the "spectral coefficients" (5). 

Authors note, that the statement of Theorem 1 was proved 
in a number of works (Yadrenko,1983; Vyzhva, 2003). 

Remark. If authors consider this theorem for the 
homogeneous isotropic random fields ξ(𝑟, θ,φ) with Gaussian 
distribution, then random values sequences ൛ς௠, ௞௟ (𝑟)ൟ  in 
decomposition (8) are sequences of independent random 
values (by fixed spherical radius 𝑟) with Gaussian distribution. 

The model, approximation theorems and procedure of 
the statistical simulation of homogeneous isotropic random 
fields on 3-D space.  

The statistical simulation of realizations of homogeneous 
isotropic random fields on 3-D space on the basis of 
"spectral decomposition" (8) is considered.  

The approximation model of homogeneous isotropic 
random fields ξ(𝑟,θ,φ) is built using series (8) which 
consists of partial sums, and looks like: 𝜉ே(𝑟, θ,φ) = ∑  ∑  𝑐௠௟௠௟ୀ଴ே௠ୀ଴ 𝑃௠௟ (cosθ)ൣ 𝜁௠, ଵ௟ (𝑟) cos 𝑙φ + 𝜁௠, ଶ௟ (𝑟) sin 𝑙φ൧,  𝑁 ∈ Ν. (11) 

The mean square approximation of random field ξ(ρ, θ,φ) by model (11) is the sum: 𝑀|ξ(𝑟, θ,φ) − ξே(𝑟,θ,φ)|ଶ ≤ πන ൝ ෍ ൬𝑚 + 12൰ஶ
௠ୀேାଵ

𝐽௠ାଵ/ଶଶ (λ𝑟)λ𝑟 ൡஶ
଴ 𝑑Φ(λ) = π/2 ෍ (2𝑚 + 1)ஶ

௠ୀேାଵ න 𝐽௠ାଵ/ଶଶ (λ𝑟)λ𝑟  ஶ
଴ 𝑑Φ(λ). 𝐸|ξ(𝑟, θ,φ) − ξே(𝑟,θ,φ)|ଶ ≤ 2π∑ ቀ𝑚 + ଵଶቁஶ௠ୀேାଵ 𝑏௠(𝑟)   (12) 

Authors need this mean square approximation in the 
convenient form for the constructing statistical simulation  
of realizations of homogeneous isotropic random fields on 
3-D space algorithm. The estimates of this mean square 
approximation were received in the following theorems. 

Authors denote the integrals as: μ௞ = ׬ λ௞Φ(𝑑λ)ାஶ଴ , 𝑘 = 0, 1, 2, … . (13) 
Theorem 2. Let a mean square continuous realvalued 

homogeneous isotropic random field ξ(ρ,θ,φ) on 3-D space 

with zero mean. If μଷ < +∞, then the mean square 
approximation of this random field by model (11) is such 
expression: 𝛭[ξ(𝑟, θ,φ) − ξே(𝑟, θ,φ)]ଶ ≤   ହ஠௥యଶேమ μଷ,  (14) 
where μଷ = ׬  ஶ଴ λଷΦ(𝑑λ). (15) 

Authors note, that the statement of Theorem 2 was 
proved in the article (Vyzhva et al., 2018a). 

Further authors consider another estimate of the mean 
square approximation of homogeneous isotropic random 
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fields on 3-D space, where the "spectral function" Φ(λ) is 
sutisfy the following condition: μଶேାଶ = න λଶேାଶΦ(𝑑λ)ାஶ

଴ < +∞. 
Theorem 3. Let a mean square continuous realvalued 

homogeneous isotropic random field on 3-D space with zero 
mean. If μଶேାଶ < +∞, then the mean square approximation 
of this random field by model ξே(𝑟,θ,φ) (11) is such 
ineguality: 𝛭[ξ(𝑟, θ,φ) − ξே(𝑟,θ,φ)]ଶ ≤ ଶಿశమ௥మಿశమ(ேାଵ)!(ଶேାଷ)! μଶேାଶ. (16) 
where μଶேାଶ = ׬ λଶேାଶΦ(𝑑λ)ାஶ଴ . (17) 

Authors note, that the statement of Theorem 3 was 
proved in the article (Vyzhva et al., 2018a). 

The algorithm of the statistical simulation of 
homogeneous isotropic random fields realizations on 3-D space 
may be formulated by using the approximation theorems 2 
and 3, which authors were considered before. Now authors 
formulate the procedure of such kind, which based on the 
"spectral decomposition" of realvalued homogeneous 
isotropic random field on 3-D space (Theorem 1). For the 
first time this type algorithm is called "spectral coefficients 
algorithm" by Vyzhva Z.O. in (Vyzhva, Fedorenko, 2013a). 

Below authors describe the procedure for the statistical 
simulation of Gaussian homogeneous isotropic random fields ξ(𝑟,θ,φ) realizations on 3-D space, which was constructed on 
the basis of model (11) and estimates (14) and (16). 

Algorithm 
1. The natural number N, which is summation limit, is 

chosen according to necessary accuracy ε ൐ 0 
approximation of the model (11) by means of one of the 
inequalities (14) or (16). Those conditions for N, which must 
be fulfilled, are listed below: 5π𝑟ଷ2𝑁ଶ μଷ ≤ ε, 
where µ3 is (15), or ଶಿశమ௥మಿశమ(ேାଵ)!(ଶேାଷ)! μଶேାଶ ≤ ε, 
where μଶேାଶ is (17). 

2. The spectral coefficients 𝑏௠(𝑟),  𝑚 = 0,1, … ,𝑁 are 
calculated by formula (6) as the integral (𝑟 – fixed spherical 
radius). 

3. Let's simulate the sequences of independent 
Gaussian random variables(r – fixed spherical radius): ൛ς௠,௞௟ (𝑟)ൟ, 𝑘 = 1,2;  𝑚 = 0,1,2, . . .  𝑁;  𝑙 = 1, . . . ,  𝑚; 
that satisfy the conditions (9) and (10). 

4. Let's calculate the realization of the stochastic random 
field ξ(𝑟, θ,φ) by formula for model (11) in given point ൫𝑟௜ , θ௝ ,φ௣൯, 𝑖 = 1,2, . . . , 𝐼;  𝑗 = 1, 2, . . . ,𝐺;  𝑝 = 1, 2, . . . ,𝑃 on  
3-D space by means of substituting in it values from the 
previous items 1, 2 and 3, numbers N and sequences of 
Gaussin random variables. 

5. Check whether the realization of the random field ξ(𝑟,θ,φ) generated in step 3 fits the data by testing the 
corresponding statistical characteristics (distribution, 
соrrelation function 𝐵(ρ)). 

The statistical simulation of the Gaussian homogeneous 
isotropic random fields realizations on 3-D space can be done by 
means of this algorithm. By this authors must have information 
about correlation function and distribution of this field. If the 
random field  have another type of distribution (not Gaussian), 
then authors simulate the sequences of independent random 
variables in step 2 with corresponding distribution. 

The statistical simulation methods of random fields by 
the aircraft magnetometry data on 3-D space. 

The map accuracy problem occurs in geophysical 
research, when the data cannot be obtained with a given 
detail in some areas of investigation. The statistical 
modeling methods of random fields realizations are 
recommended (Vyzhva, 2003, 2011; Vyzhva et al., 2010, 
2012, 2018a; Vyzhva, Fedorenko, 2013a, 2013b; Vyzhva Z., 
Vyzhva A., 2016) to supplement data missing in such cases. 

In the presented work, the data of aeromagnetic surveys for 
the Ovruch depression were studied, in order to improve the 
accuracy of maps, on which the authors carried out statistical 
modeling of random fields based on the "spectral representation". 
The object of geophysical research was the data of aeromagnetic 
survey of 1:10,000 scale on the area of size 2500 ൈ  2500 m2, 
that was conducted during period 1996–2002. 

The full magnetic field intensity vector T was investigated 
(see the map on fig. 1). The work was carried out on 
25 profiles with a distance of 100 meters between them 
(X from 0 to 2500 m and Y from 0 to 2500 m) and authors 
have for statistical analyses 625 points of investigation. 

 

 
Fig. 1. The map of aeromagnetic survey data ΔTan in the Ovruch depression (built in Surfer) 

 

X, m 

Y, m 
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Further authors translate the Cartesian coordinates (𝑥,𝑦, 𝑧) of the three-dimensional space, which are tied to the 
points of measurement, into spherical coordinates (𝑟,θ,φ) 
for using our random fields statistical modeling method. 

Authors did the data analysis, while constructing data 
graphs for input data of each profile and authors think 
that it is expedient to distinguish deterministic and 
random components. The deterministic function (trend 𝑓௜(𝑟, θ,φ), 𝑖 = 1, 2, … , 25 – profile numbers) can be selected 
in different ways. One determination method was considered 
in (Vyzhva et al., 2012). But there is a more accurate way to 
select deterministic component – approximation by cubic spline 
data (Vyzhva et al., 2010, 2018a; Vyzhva, Z., Vyzhva A., 
2016). The difference between spline approximation of data 
and input data is a random process that is frequently stationary 
for most profiles of investigation. 

Authors use the notation of the input data on the profile 
as a random field 𝜂௜(𝑟, θ,φ), where 𝑖 is profile numbers. The 
stationary random component ξі(𝑟, θ,φ) (random fields) for 
input data and trend 𝑓௜(𝑟, θ,φ) as determined cubic spline 
function were selected for each profile (𝑖 = 1, 2, … , 25). Thus, 
the input data on profiles is a random field in the form of a sum: η௜(r, θ,φ) = 𝑓௜(𝑟,θ,φ) + ξі(𝑟, θ,φ), 𝑖 = 7, . . . ,20.  (18) 

Now authors introduce the notation of spline 
approximation for input data in the profile number 𝑖 as 𝑆௜(ଵ)(𝑟, θ,φ), built by means of the MathCad software for PR𝑖 
(profile № 𝑖) data. Parameters defined by the data were 
determined for such spline in the profile.  

Based on observations (values) of random component ξі(𝑟, θ,φ), 𝑖 = 7, . . . ,20 in all 13 profiles authors created array 
that frequently represents isotropic random field ξ(𝑟,θ,φ) on 
3-D space with zero mathematical expectation and 
approximately Gaussian distribution (fig. 2).  

 

 
Fig. 2. Histogram for observed values of random component for input aeromagnetic survey data in all 13 profiles  

(for PR7-PR20) in the Ovruch depression. The red line indicates the density of the Gaussian distribution 
 

By availability of such properties of input data, authors 
can apply the method of statistical simulation of random 
fields on 3-D space based on their "spectral decomposition" 
(8) for aeromagnetic survey data, which allows finding the 
perfect image of entire observations field for their certain 
implementation values. So, authors generate additional 
random component data in the points from investigation 
areas on 3-D space where geomagnetic measurements 
were not carried out, for example, with double precision 
intervals of 50 compare to 100 meters or between profiles. 
Authors can impose this modeling data on the spline curve 
trend 𝑆௜(ଵ)(𝑟, θ,φ), 𝑖 = 7, . . . ,20 for each profile and obtain 
more detailed aeromagnetic survey data in the field of 
observations. This method differs from the traditional 
interpolation method, which uses the average of neighboring 
measured points for the calculation point. Our method takes 
into account the statistical distribution of airborne magnetic 
survey data and the correlation between data points. Using 
the above method makes it possible to supplement the 
missing data in the study area with greater accuracy than in 
(Vyzhva, Fedorenko, 2013b). (the mean square deviation is 
0, 225) and then in (Vyzhva et al., 2018a) with Bessel type 
correlation function (the mean square deviation is 0, 195), 
taking into account their statistical nature. 

The built variogram of these implementations ξ௜(𝑟,θ,φ), 𝑖 = 7, . . . ,20 has the best approximation (the mean 
square deviation is 0,011) by theoretical variogram which is 
connected to the Gaussian type correlation function 
(Vyzhva, 2003) for parameter с ≈ 4,2 ∗ 10ିଷ. In this case, 
the Gaussian type correlation function has form: 𝐵(ρ) = 𝑒𝑥𝑝   {−𝑐 𝜌ଶ} , 𝑐 ൐ 0.  (19) 

This confirms the adequacy of simulated implementations 
to the real research data.  

Based on this article, the authors have built an 
improved algorithm for the statistical simulation of 
Gaussian isotropic random fields on 3-D space with 
Gaussian type соrrelation function. 

The "spectral density" is obtained by Gaussian type 
соrrelation function (19) as following formula: 𝑓(λ) = ఒమଶ √஠ ௖య 𝑒𝑥𝑝   ቄ− ஛మସ ௖ቅ. (20) 
According to formula: 𝑏௠(𝑟) = ቀπ௖ቁయమ   ଵଶ௥ 𝑒𝑥𝑝   { −2𝑟𝑐ଶ}𝐼௠ାభమ (2𝑐𝑟ଶ)  (21) 
are calculated the "spectral coefficients", which correspond 
to the Gaussian type correlation function (19) and spectral 
density (20) formula of random field ξ(𝑟,θ,φ), where 𝐼௠(𝑧) 
is the modified Bessel function of the first kind of order 𝑚. 

Number of random 
components  



ГЕОЛОГІЯ. 3(102)/2023 ~ 85 ~ 

 

 
ISSN 1728-2713 (Print), ISSN 2079-9063 (Online) 

These "spectral coefficients" authors used in proposed 
above algorithm. The statistical simulation of realizations of the 
homogeneous isotropic random fields ( , , ), 7,...,20і r і =ϕξ θ  on 
3-D space with Gaussian type correlation function can be done 
by means of constructed algorithm. 

Earlier, based on the estimate from (Vyzhva et al., 
2018b), and model (11), an algorithm for statistical modeling 
of realizations of Gaussian homogeneous isotropic random 
fields was described. In the case of the Bessel-type 
correlation function, this algorithm was constructed in 
following (Vyzhva et al., 2018a, 2018b). In the articles 
(Vyzhva et al., 2019, 2020) the considered algorithm was 
constructed for the spherical correlation function and in the 
paper (Vyzhva et al., 2020b) this algorithm was constructed 
for "cubic" correlation function. 

Below authors describe the procedure for the statistical 
simulation of Gaussian homogeneous isotropic random 
fields ξ(𝑟, θ,φ) realizations on 3-D space for random fields 
with Gaussian type correlation function. 

The algorithm for random fields with Gaussian type 
correlation function. 

1. The natural number N, which is summation limit, is 
chosen according to the required accuracy ε ൐ 0 of the 
approximation of the model (11). In this case, for the 
Gaussian type correlation function "spectral coefficients" 
(21) of the model (11), the condition is fulfilled: ହ஠௥యଶேమ μଷ ≤ ε  (22) 
where  μଷ = 1/2√π𝑐ଷ ׬ λହ𝑒𝑥𝑝 (− ஛మସ௖)𝑑λ ஶ଴ . 

2. For the Gaussian type correlation function (19), the 
"spectral coefficients" 𝑏௠(𝑟), 𝑚 = 0, 1, 2, …𝑁 are calculated 
as the integral (21). 

3. Let's model the sequences of independent Gaussian 
normal random variables which have the form ൛ς௠,௞௟ (𝑟)ൟ,   𝑘 = 1,  2;   𝑚 = 0,1,2, . . .  𝑁;   𝑙 = 1, . . . ,  𝑚; which satisfying 
the conditions (22) with "spectral coefficients" (21). 

4. By substituting the calculating number N, "spectral 
coefficients" values 𝑏௠(𝑟), 𝑚 = 0, 1, 2, …𝑁, for the Gaussian 
type correlation function ൛ς௠,௞௟ (𝑟)ൟ, 𝑘 = 1,2;   𝑚 = 0,1,2, …𝑁;  𝑙 =  1, . . . ,  𝑚; and obtained in the previous items 3 sequences 
of Gaussian random variables into formula (11) for the 
model, authors calculate the realization value of the random 
field ξ(𝑟, θ,φ) at the given point оn 3-D space: ൫𝑟௜ ,θ௝ ,φ௣൯,𝑖 = 1,2, . . . , 𝐼;  𝑗 = 1,2, . . . ,𝐺;  𝑝 = 1,2, . . . ,𝑃. 

5. Authors check whether the realization of the random 
field ξ(𝑟, θ,φ)  generated in step 4 fits the data by testing the 
corresponding statistical characteristics (distribution and 
Gaussian type соrrelation function). 

The implementation of the above algorithm makes it 
possible to more accurately fill in the missing aeromagnetic 
survey data in the study area in the Ovruch depression. The 
authors generate additional data realizations of the random 
component in the points from investigation areas where 
geomagnetic measurements were not carried out (with a 
double precision interval of 50 meters compared to 100 meters 
between profiles). Next, a statistical analysis of 
implementations modeled according to this algorithm is 
carried out. For this purpose, semivariograms of arrays of 
input and simulated data were constructed. 

 

  
Fig. 3. Empirical (black line) and simulated  

(red crosses) variograms of input data arrays ΔTan  
for PR7-PR20, which corresponding to Gaussian type 

correlation function 𝑩(𝛒) = 𝒆𝒙𝒑   {−𝒄𝛒𝟐} (𝒄 ≈ 𝟒,𝟐 ∗ 𝟏𝟎ି𝟑) 
Fig. 4. Empirical (black line) and simulated (red crosses) variograms 
of simulated data arrays ΔTan for PR7-PR20, which corresponding  

to Gaussian type correlation corresponding to Gaussian type 
correlation function 𝑩(𝛒) = 𝒆𝒙𝒑   {−𝒄𝛒𝟐} (𝒄 ≈ 𝟒,𝟐 ∗ 𝟏𝟎ି𝟑) 

  
The variograms of input and simulated data arrays ΔTan 

for PR7-PR20, corresponding to Gaussian type correlation 
function (25) at the value of the parameter 𝑐 ≈ 4,2 ∗ 10ିଷ are 
shown in fig. 3 and fig. 4 respectively. This confirms the 
adequacy of simulated by this algorithm implementations to 
the real aeromagnetic survey research data. So, authors 
generated the adequate random component 
implementations on the study area in the Ovruch depression 
with twice detail for each profile, according to this algorithm. 

The final stage of our method was the superimposing of 
realizations array ξ௜(𝑟, θ,φ), 𝑖 = 7, . . . ,20, that we got by 

statistical simulation, on the spline approximation 𝑆௜(ଵ)(𝑟, θ,φ), 𝑖 = 7, . . . ,20 of real aeromagnetic survey data. 
Finally, authors received more detailed implementation for 
the geomagnetic observation data in the Ovruch depression 
selected area as a result of our modeling work. Authors built 
the map (a) of aeromagnetic survey data ΔTan (general map) 
and the map (b) of aeromagnetic survey data ΔTan with 
generated by the Gaussian type correlation function 
additional data in the points with double precision intervals 
in the Ovruch depression (fig. 5). 
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Fig. 5. a) The map of aeromagnetic survey data ΔTan (general map) M 1:10 000, (PR 7-20);  

b) the map of aeromagnetic survey data ΔTan plus generated with the Gaussian type correlation function additional data  
in the points with double precision intervals in the Ovruch depression M 1:10 000 (built in Surfer) 

 
Conclusions 
The method of statistical simulation of a random field on 

spatial three-dimensional realizations makes it possible to 
supplement the measurement results of the full vector of the 
magnetic field over a great square area in the Ovruch 
depression with a given detail. 

The built variogram of random component for 
aeromagnetic survey data has the best approximation by 
theoretical variogram which is connected to the Gaussian 
type correlation function (the mean square deviation is 
0,011), then in (Vyzhva et al., 2010; Vyzhva, Z., Vyzhva A., 
2016) which is connected to the Bessel type correlation 
function (the mean square deviation is 0,225). 

The algorithm for statistical simulation of realizations of 
Gaussian homogeneous isotropic random fields in three-
dimensional space with a Gaussian-type correlation function 
proposed for use in this paper is an important addition to the 
Monte Carlo method used in geophysics. It can also be used 
to detect abnormal areas. 
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СТАТИСТИЧНЕ МОДЕЛЮВАННЯ ВИПАДКОВИХ ПОЛІВ ІЗ ГАУССІВСЬКОЮ КОРЕЛЯЦІЙНОЮ ФУНКЦІЄЮ 

ДЛЯ ДОСЛІДЖЕННЯ ДАНИХ МАГНІТОМЕТРІЇ 
 
Розроблено універсальні методи статистичного моделювання (методи Монте-Карло) геофізичних даних із застосуванням Гауссівської 

кореляційної функції, які дають змогу розв'язати проблеми генерування адекватних реалізацій випадкових полів на сітці в тривимірному 
просторі будь-якої регулярності та детальності. Оскільки в геофізиці більшість результатів досліджень об'єктів подається у цифровій 
формі, точність якої залежить від різних випадкових впливів, то при цьому виникає проблема кондиційності карт у випадку, коли дані не-
можливо отримати із заданою детальністю в деяких ділянках спостережень. Для розв'язання проблем кондиційності карт, доповнення 
додатковими даними потрібної детальності результатів досліджень, для досягнення необхідної точності спостережень та інших про-
блем подібного роду в геофізичних задачах пропонується застосовувати методи статистичного моделювання випадкових полів.  

Сформульовано алгоритм чисельного моделювання реалізацій однорідних ізотропних випадкових полів у тривимірному просторі з 
Гауссівською кореляційною функцією на основі теореми про оцінку середньоквадратичної апроксимації таких випадкових полів частко-
вою сумою ряду "спектрального розкладу". На прикладі даних аеромагнітної зйомки в районі Овруцької западини впроваджено запропо-
нований алгоритм статистичного моделювання випадкових полів у розв'язанні проблем кондиційності карт шляхом доповнення даних 
змодельованими адекватними реалізаціями до необхідної детальності. Під час аналізу даних по профілях їх розділено на детерміновану 
(тренд) та випадкову складові. Тренд даних пропонується наближати кубічними сплайнами, однорідну ізотропну випадкову складову – 
моделювати на основі "спектрального розкладу" випадкових полів у тривимірному просторі. Модельний приклад – дані аеромагнітної 
зйомки на території Овруцької западини. За наведеним алгоритмом було отримано реалізації випадкової складової в області дослі-
дження із подвоєною детальністю по кожному профілю. Перевіряючи їх на адекватність, зроблено висновки, що відповідна гістограма 
випадкової складової має гауссівський розподіл. Побудована варіограма цих реалізацій має найкраще наближення теоретичною варіог-
рамою, яка пов'язана з кореляційною функцією Гауссівського типу. У результаті накладення змодельованого масиву випадкової складо-
вої на сплайнову апроксимацію реальних даних отримано більш детальну реалізацію для даних геомагнітних спостережень у виділеній 
області. Проведено порівняльний аналіз результатів моделювання реалізацій випадкових полів із Гауссівською кореляційною функцією 
з іншими кореляційними функціями. Отже, метод статистичного моделювання реалізацій випадкових полів у тривимірному просторі з 
Гауссівською кореляційною функцією дає можливість максимально адекватно доповнити даними із заданою детальністю результати 
вимірювань повного вектора напруженості магнітного поля. 

 
К л ю ч о в і  с л о в а :  статистичне моделювання, спектральний розклад, Гауссівська кореляційна функція, кондиційність карт. 
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