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ABOUT METHODS OF RANDOM FIELDS STATISTICAL SIMULATION  

ON THE SPHERE BY THE AIRCRAFT MAGNETOMETRY DATA 
 

(Рекомендовано членом редакційної колегії д-ром фіз.-мат. наук, проф. Б.П. Масловим) 
There have been developed universal methods of statistical simulation (Monte Carlo methods) of geophysical data for generating 

random fields on the sphere on grids of required detail and regularity. Most of the geophysical research results are submitted in digital 
form, which accuracy depends on various random effects (including equipment measurement error). The map accuracy problem occurs 
when the data cannot be obtained with a given detail in some areas. Іt is proposed to apply statistical simulation methods of random fields 
realizations, to solve the problems of conditional maps, adding of data to achieve the necessary precision, and other similar problems in 
geophysics. Theorems on the mean-square approximation of homogeneous and isotropic random fields on the sphere have been proved 
by special partial sums. A spectral coefficients method was used to formulate algorithms of statistical simulation by means of these 
theorems. A new effective statistical technique has been devised to simulate random fields on the sphere for geophysical problems. 
Statistical simulation of random fields on the sphere based on spectral decomposition has been introduced in order to enhance map 
accuracy by the example of aeromagnetic survey data in the Ovruch depression. It is divided into deterministic and random components 
for data analysis. The deterministic component is proposed to approximate by cubic splines and the random component is proposed to 
modeling on the basis of random fields on the sphere by spectral decomposition. Model example – the aircraft magnetometry data. 
According to the algorithm we received random component implementations on the study area with twice detail for each profile. When 
checking their adequacy we made the conclusions that the relevant random components histogram has Gaussian distribution. The built 
variogram of these implementations has the best approximation by theoretical variogram which is connected to the Bessel type correlation 
function. The final stage was the imposing array of random components on the spline approximation of real data. As a result, we received 
more detailed implementation for the geomagnetic observation data in the selected area. 

Keywords: Statistical simulation, spectral decomposition, spline interpolation, conditional maps. 
 
Introduction. The problems of random fields statistical 

simulation on the sphere with given probability 
characteristics arise solving the actual geophysics 
problems. In this case a special care is necessary for 
reduction of calculations, amount of which rapidly grows 
together with the dimension of the argument of the random 
field. Different approaches related to the solving of problems 
of random fields statistical simulation where described in a 
lot of papers. 

It is proposed in the papers (Вижва та ін., 2010; Vyzhva 
and Vyzhva, 2016) to apply methods of statistical simulation of 
realizations of random fields on the plane, to solve the problems 
of conditional maps, adding of data to achieve the necessary 
precision, and other such problems in geophysics. The 
approximations theorems and built on their base algorithms of 
statistical simulation of Gaussian homogeneous and isotropic 
random fields on the plane using the spectral representation 
are considered. Model example is the aircraft magnetometry 
data. It is divided into deterministic and random components for 
data analysis. The deterministic component is proposed to 
approximate by cubic splines and the stationary random 
component is proposed to modeling on the basis of spectral 
decomposition of random fields on the plane. But the 
magnetometry data was investigated on the great square, 
because we consider it on the part of the sphere. It is proposed 
the stationary random component to modeling on the basis of 
spectral decomposition of random fields on the sphere in this 
paper. Using the above method makes it possible to 
supplement the missing magnetometry data in the study area 
with greater accuracy than in the paper (Вижва та ін., 2010; 
Vyzhva and Vyzhva, 2016) with the 2-D method. 

In this paper the algorithm of statistical simulation of 
Gaussian isotropic random fields on the sphere using the 
basic spectral representation (Вижва та Ядренко, 2000) is 
considered. 

Random field statistical simulation based on spectral 
representation was introduced  in order to enhance map 

accuracy by the example of aeromagnetic survey data in the 
Ovruch depression. 

Methods of statistical simulation of random field on the 
sphere based on representation it by stochastic sums was 
considered in papers (Yadrenko, 1993; Chiles and 
Delfiner,1999; Prigarin, 2005; Vyzhva, 1997; Vyzhva, 2003; 
Вижва та Ядренко, 2000) and other. 

The spectral representation of isotropic random 
fields on the sphere and approximation theorems. We 

consider a real-valued isotropic random field ),,(  r on 

the sphere S3(r) on 3-D space ( , ,r    − spherical 

coordinates). It is known, that square-mean continuous real-

valued isotropic random field ),,(  r , what is narrowing 

on the sphere with radius r on 3-D Euclidean space R3, admit 
the spectral decomposition 
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  is Kronecker symbol, )(  is the bounded 

nondecreasing function so-called spectral function and 
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where ( )l
mP x  is associated Legendre functions degree m, 
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The соrrelation function ( )B  of the isotropic random 

field ( , , )r    on 3-D Euclidean space R3 may by 

presented (Vyzhva and Fedorenko, 2013) as an integral 
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where ( )   is spectral function,   is distance between the 

points x, y   R3  (x = (r1,  1 ,  1),  y = (r2,  2,  2)):

2 2
1 2 1 22 cos ,r r r r     and cos  – angular 

distance between vectors x, y   R3 : 
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The variances of ( )l
m r we obtain as 
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Than we have the formulas for coefficients bm(r)  
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We will call the coefficients bm(r) as spectral coefficients. 
These coefficients are defined by the соrrelation function 

( )B  in the way: 

0
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The variance of random field ( , , )r    we obtain by this as 
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However, there is used the spectral decomposition of this 
random field by solution problems of statistical simulation of 
realizations of random fields on the sphere in 3-D space, on this 
figurate real-valued random variables. Let us adduce that 
decomposition. The following statement is true. 

Theorem 1. Let ( , , )r    is a mean square continuous 

realvalued isotropic random field on the sphere S3(r) in 3-D 
space (r – radius sphere) with zero mean. Then this random 
field admits (Вижва, 2011) the following spectral 
decomposition: 
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sequences,  satisfying the next conditions: 

1) , ( ) 0 ;l
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where p
p
 – Kronecker symbol, ,m lс – constants sequences 

are calculated by the formula (1), а ( )mb r – the spectral 

coefficients (4). 
Remark. 
If we consider this theorem for the Gaussian isotropic 

random fields ( , , )r    on the sphere, then random values 

sequences  , ( )l
m k r  in decomposition (7) are 

interdependent independent Gaussian random values. 
A procedure of the statistical simulation of random 

fields on the sphere. The statistical simulation of 
realizations of random fields on the sphere S3(r) on the basis 
of spectral decomposition (7) is considered.  

Approximation model is constructed by using the partial 
sums of series (7) 
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The mean square approximation of random field 
( , , )    by model (10) is 
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We need this mean square approximation in the convenient 
form for the constructing statistical simulation of realizations of 
isotropic random fields on the sphere algorithm. These 
estimates were received in the following theorems. 

We denote the following: 

 
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Theorem 2. Let a mean square continuous realvalued 
isotropic random field ( , , )r    on the sphere S3(r) in 3-D 

space with zero mean(r – radius sphere). If 3   , then 

the mean square approximation of this random field by 
model (10) is such that  
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Proof: We estimate the inequality (13) by using (Вижва, 
2011) and (Yadrenko and Gamaliy, 1998) stated below. 

Lemma 1. (Vyzhva and Fedorenko, 2016) We have the 
next inegualites for the Bessel functions of the first kind : 
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We obtain, applying the previous lemma, the next 
evaluation for mean square approximation (11): 
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where 3  is (14). 

We can conclude, that the statement of Theorem 2 holds 
true on the base Lemma 1. 

Further we consider another estimate of the mean 
square approximation of random fields on the sphere S3(r), 
where the spectral function ( )   satisfies the following 

condition  
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Theorem 3. Let a mean square continuous realvalued 
isotropic random field ( , , )r    on the sphere S3(r) in 3-D 

space with zero mean (r – radius sphere). If 2 2N   , 
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Proof: We estimate the inequality (15) by using (Вижва 
та Федоренко, 2013) and the lemma 2. 

Let us give some properties of integral expressing (4) for 
spectral coefficients ( ), = 0,1,mb r m   by means of the 

results in the book Watson (Watson, 1949) and we proved 
next lemma. 

Lemma 2. If ( ), = 0,1,mb r m   is evaluated by formula 

(4), then the following properties of it hold true 
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Proof. We derive, applying results Watson (Watson, 
1949), p. 42 formula 2.6 (1), such us 
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Then we obtain the inequality(18), by using formula 2.6 
(1) Watson (Watson, 1949), p. 42, as follows: 

 

=

1 2
10

= 2

(2 1) (0, ) =

(2 1) ( ) ( ) =

m
m s

mm s

m b r

m J d



 





     




 

   1 2 2 10 0
=

2
( ) (2 1) 2 sin .m

m s

m J d d
  

      
    (20) 

Then we use   ( 2 )! !(2 )! = 2 ! !, , 0,sm s m s s m m s     
2.7 (1) Watson (Watson, 1949), p. 44, and the following 
inequality holds 

 


   

2 1
=

2 2 1
=0

(2 1) 2λρsinθ =

(2 2 1) 2λρsinθ

m
m s

m s
m

m J

m s J







 



   




 


 

 

 

2 2 1
=0

2 1

1 ( 2 1 1)!
(2 2 1) (2λρsin )

!2 !

sin
.

2 !

m ss
m

s

s

m s
m s J

ms

s



 



  
   

 



 

We use the latter result and formulas 3.621 (1) С‚Р° 
8.384 (1) Gradshteyn and Ryzhik (Градштейн и Рыжик, 
1971) and obtain inequality (19) as 
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where ( 1, 1)B s s   – is Beta function. 

Thus, the statement of Lemma 2 holds true. 
Finally, we use inequalities (15), (19) and equality (18) 

and obtaine the mean square estimates for the 
approximation of a random field ( , , )r    by model (10). 

The finding estimate we find from 
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We use Lemma 2 by s=N and the finding estimate of 
Theorem 3 is written as (16). We can conclude, that the 
statement of Theorem 3 holds true on the base of Lemma 2. 

Using the approximation theorems 2 and 3 the algorithm of 
the statistical simulation of realizations of isotropic random 
fields on the sphere may be formulated. We formulate based 
on the idea spectral decomposition of realvalued isotropic 
random field on the sphere procedure of such kind. The first 
one, of algorithm by Z.O. Vyzhva in (Вижва та Ядренко, 2000) 
is called "spectral coefficients" algorithm. 

Below we describe the procedure for the statistical 
simulation of realizations of Gaussian isotropic random 
fields ( , , )r    on the sphere S3(r) (r – fixed radius sphere), 

which was constructed on the basis of model (10) and 
estimates (13) and (16). 

Algorithm.  
1. Natural number N (border of summation) is chosen 

according to necessary ߝ ൐ 0 accuracy of approximation 
the model (10)  by means of one of the next inequalities (13) 
or (16) mentioned below: 

3

32

5
,

2

r

N


     (21) 

or 

 
 

2 2 2

2 2
5 1 !

.
2 3 !

N N

N
r N

N

 




  


 (22) 

1. Calculate the spectral coefficients   ,mb r  

0,1,...,m N   by formula (5). 
2. Simulate the sequences of independent Gaussian 

random variables: 

  ,mb r    , ,l
m k r  1,2;k   0,1,2... ;m N  1,..., ;l m  

that satisfy conditions (8) and (9). 
3. Calculate the realization of the stochastic random 

field ( , , )r    by formula (10) in given point by means of 

substituting in it values from the previous items 1, 2 and 3, 
numbers N and sequences of Gaussian random variables. 

4. Check whether the realization of the random field 
( , , )r    generated in step 3 fits the data by testing the 

corresponding statistical characteristics (distribution, 
соrrelation function ( )B  ). 

The statistical simulation of realizations of the Gaussian 
isotropic random fields on the sphere can be done by means 
of this algorithm. If the random field  have another type of 
distribution, than we simulate the sequences of independent 
random variables in step 2 with corresponding distribution. 

Statistical simulation methods of random fields by 
the aircraft magnetometry data. Most of the geophysical, 
meteorology, oceanography and other research results are 
submitted in digital form, which accuracy depends on 
various random effects (including equipment measurement 
error). The map accuracy problem occurs when the data 
cannot be obtained with a given detail in some areas. In 
such cases the methods of statistical modeling realizations 
of random fields are recommended (Вижва та ін., 2010; 
Vyzhva et al., 2012) to supplement data missing.  

There has been introduced random field statistical 
simulation based on spectral representation on the sphere in 

order to enhance map accuracy by the example of 
aeromagnetic survey data in the Ovruch depression. The object 
of research is data aero magnetic survey of 1: 10 000 scale in 
the area 2500   2500 m2 that was conducted during 1996–
2002 years (Fig. 1). The full magnetic field intensity vector T 
was investigated. The work was carried out on 25 profiles with 
a distance of 100 meters between them (X from 0 to 2500 m 
and Y from 0 to 2500 m – 625 points). 

Because the magnetometry data was investigated on the 
great square, we consider it on the part of the sphere. We 
translate the Cartesian coordinates (x, y, z) of the three-
dimensional space, which are tied to the points of 
measurement, into spherical coordinates (r,) (r – fixed 
radius sphere).  

 

 
Fig. 1. The map of aeromagnetic survey data ΔTan  

in the Ovruch depression 
 

While constructing data graphs for each account, we 
noticed that it is expedient to distinguish deterministic and 
random components. Deterministic function can be selected 
in different ways. One determination method its analytical 
form (trend ( , , )if r    (i=1, 2, …, 25 – profile numbers) as a 

function of exponentially damped sinusoid or cosinusoid) 
was considered in (Вижва та Федоренко, 2013). But there 
is a more accurate way to select deterministic component – 
approximation by cubic spline data. The difference between 
spline approximation of data with gaps (e.g. due to one) for 
each profile and spline curve for all points is a random 
process that is frequently stationary for most profiles. 

We introduce the notation for input data on the profile as 
a random field ( , , )i r    (i – profile numbers) on the 

sphere. The stationary random component ( , , )і r    

(random fields) and trend ( , , )if r   as determined cubic 

spline function were selected for each profile (i=1, 2, …, 25). 
Input data on the profiles is a random field 

( ,  , ) ( , , ) ( , , ), 7,..., 20.i i іr f r r i                (23) 

Solid line on Figure 2 shows a deposited spline 

approximation (1) ( , , )iS r   , built by means of the MathCad 

software for PR1 (profile №1) data that are taken without 
spaces. Parameters defined by the data were determined 
for such spline. They ask each profile trend ( , , )if r   . 

Dashed line shows the spline approximation graph 
(2) ( , , )iS r    of the first profile data with gaps due to one 

point of observation (i.e. for 50 points out of 100). Noise was 
obtained by calculating the following difference: 

(1) (2)
i i iξ ( , , ) S ( , , ) S ( , , ) , i 7,8,..., 20r r r         .   (24) 
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From observations (values) of random component 
( , , ), 7,..., 20і r i     in all 13 profiles we created array that 

frequently represents isotropic random field ξ ( ,θ, )r f on 

the sphere S3(r) with zero mathematical expectation and 
approximately Gaussian distribution (Fig. 3).  

 
 

 
Fig.2. Logarithmic input data and spline ΔTan in PR1 Fig.3. Observed values of random component in all 13 

profiles (for PR7-PR20) 

 

 
 

Fig. 4. Variogram of input data arrays ΔTan for PR7-PR20, 
corresponding to Bessel type correlation function
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Fig. 5. Variogram of simulated data arrays ΔTan for PR7-
PR20, corresponding to Bessel type correlation function
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By fields of such properties we can apply the method of 

statistical simulation of random fields on the sphere based on 
their spectral expansions (Vyzhva, 1997), which allows 
finding the perfect image of entire observations field for their 
certain implementation values. So we generate additional 
random component data in the points where geomagnetic 
measurements were not carried out, for example, with double 
precision intervals of 50 compare to 100 meters or between 
profiles. We can impose this data on the spline curve trend 

(1) ( , , ), 7,..., 20iS r і    for each profile and obtain more 

detailed aeromagnetic survey data. This method differs from 
the traditional interpolation method, which uses average 
value of neighboring measured points for calculation point. 
Our method takes into account the correlation between data 
points and their statistical distribution. Using the above 
method makes it possible to supplement the missing data in 
the study area with greater accuracy than in (Vyzhva et al., 

2012) (the mean square deviation is 0, 225), taking into 
account their statistical nature. 

The built variogram of these implementations 
( , , ), 7,..., 20і r і     has the best approximation (the mean 

square deviation is 0, 195) by theoretical variogram which is 
connected to the Bessel type correlation function (Vyzhva, 
1997), p. 214 for parameter a ≈4,2*10-3: 

3
2

3
2

( )
( ) 3 , ( 0)

2 ( )

J a
B a

a


  


                (25) 

where 3
2
( )J a   is the Bessel function of the first kind of order 3/2. 

This confirms the adequacy of simulated 
implementations to the real research data. 

The spectral coefficients, which correspond to the 
correlation function (25) of random field ( , , )r   , are 

calculated (Вижва, 2011), p. 213 by the formula 
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2
23

( ) ( ) ( ) ( )m m m m
b r J a r J ar J ar

ar   

     ,     (26)  

where ( )mJ ar   is the Bessel function of the first kind of order m. 

These spectral coefficients we used in proposed above 
algorithm. The statistical simulation of realizations of the 
Gaussian isotropic random fields ( , , ), 7,..., 20і r і     can 

be done by means of this algorithm. 
Variograms of input and simulated data arrays ΔTan for PR7-

PR20, corresponding to Bessel type correlation function (25) at 

the value of the parameter a ≈4,2*10-3 are shown on Figure 4 
and Figure 5 respectively. This confirms the adequacy of 
simulated implementations to the real research data. 

According to the algorithm we received random 
component implementations on the study area with twice 
detail for each profile. The final stage was the imposing array 
of realizations ( , , ), 7,..., 20і r і     what we got by 

statistical simulation on the spline approximation of real data. 
As a result, we received more detailed implementation for the 
geomagnetic observation data in the selected area (Fig. 6). 

 

 
Fig.6. a) The map of aeromagnetic survey data ΔTan (general map) M 1:10 000, (PR 7-20); 

b) the map of aeromagnetic survey data ΔTan  plus generated additional data 
in the points with double precision intervals in the Ovruch depression M 1:10 000 

 
Conclusions. The statistical simulation method of 

random field on the sphere implementations makes it 
possible to supplement with a given detail the measurement 
results of magnetic field full vector on the great square 
territory. The built variogram of random component has the 
best approximation (the mean square deviation is 0, 195) 
than in (Вижва та ін., 2010; Vyzhva and Vyzhva, 2016) (the 
mean square deviation is 0, 225) by theoretical variogram 
which is connected to the Bessel type correlation. 
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ПРО МЕТОДИ СТАТИСТИЧНОГО МОДЕЛЮВАННЯ ВИПАДКОВИХ ПОЛІВ НА СФЕРІ  

ДЛЯ ДАНИХ АЕРОМАГНІТОМЕТРІЇ 
 
Розроблено універсальні методи статистичного моделювання (методи Монте-Карло) геофізичних даних, які дають можливість 

розвязувати проблеми генерування реалізацій випадкових полів на сітці сфери будь-якої регулярності та детальності. У геофізиці бі-
льшість результатів досліджень подається у цифровій формі, точність якої залежить від різних випадкових впливів (у тому числі від 
похибки вимірювання апаратури). При цьому виникає проблема кондиційності карт у випадку, коли дані неможливо отримати із заданою 
детальністю на деяких ділянках. Для розв'язання проблем кондиційності карт, доповнення даними для досягнення необхідної точності 
та інших проблем подібного роду в геофізичних задачах пропонується застосовувати методи статистичного моделювання реалізацій 
випадкових полів. Використано теореми про оцінку середньоквадратичної апроксимації ізотропних випадкових полів на сфері частко-
вими сумами рядів спеціального вигляду, за допомогою яких сформульовано алгоритми чисельного моделювання реалізацій таких ви-
падкових полів методом спектральних коефіцієнтів. Розроблено нову ефективну методику застосування до розв'язання геофізичних 
задач методів статистичного моделювання випадкових полів на сфері. На прикладі даних аеромагнітної зйомки в районі Овруцької за-
падини впроваджено статистичне моделювання реалізацій випадкових полів на основі спектрального розкладу у розв'язання проблем 
кондиційності карт шляхом доповнення даних до необхідної детальності. При аналізі даних по профілях їх розділено на детерміновану 
та випадкову складові. Детерміновану складову даних пропонується наближати кубічними сплайнами, ізотропну випадкову складову – 
моделювати на основі спектрального розкладу випадкових полів на сфері (модельний приклад – дані аеромагнітної зйомки). За наведе-
ним алгоритмом було отримано реалізації випадкової складової на області дослідження з подвоєною детальністю по кожному профілю. 
При перевірці їх на адекватність зроблено висновки, що відповідна гістограма випадкової складової має гауссівський розподіл. Побудо-
вана варіограма цих реалізацій має найкраще наближення теоретичною варіограмою, яка пов'язана із кореляційною функцією бесселе-
вого типу. Завершальним етапом роботи було накладення масиву випадкової складової на сплайнову апроксимацію реальних даних. У 
результаті цього отримано більш детальну реалізацію для даних геомагнітних спостережень у виділеній області. Отже, метод ста-
тистичного моделювання реалізацій випадкових полів на сфері дає можливість максимально адекватно доповнити, із заданою деталь-
ністю, даними результати вимірювань повного вектора напруженості магнітного поля. 

Ключові слова: статистичне моделювання, спектральний розклад, сплайн-інтерполяція, кондиційність карт. 
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О МЕТОДАХ СТАТИСТИЧЕСКОГО МОДЕЛИРОВАНИЯ СЛУЧАЙНЫХ ПОЛЕЙ НА СФЕРЕ  

ДЛЯ ДАННЫХ АЭРОМАГНИТОМЕТРИИ 
 
Разработаны универсальные методы статистического моделирования (методы Монте-Карло) геофизичеких данных, которые 

дают возможность решить проблемы генерирования реализаций случайных полей на сфере на сетке любой детальности и регулярно-
сти. В геофизике большинство результатов исследований подаётся в цифровой форме, точность которой зависит от разных слу-
чайных влияний (в том числе от погрешности измерения аппаратуры). При этом возникает проблема кондиционности карт в случае, 
когда данные невозможно получить на некоторых участках. Для решения проблем кондиционности карт, дополнения данными для до-
стижения необходимой точности и других проблем подобного рода в геофизических задачах предлагается применять методы стати-
стического моделирования реализаций случайных полей. Использованы теоремы об оценке среднеквадратической аппроксимации изо-
тропных случайных полей на сфере частичными суммами рядов специального вида, при помощи которых сформулированы алгоритмы 
численного моделирования реализаций таких случайных полей методом спектральных коэффициентов. Разработана новая эффекти-
вная методика применения методов статистического моделирования случайных полей на сфере при решении геофизических задач. На 
примере данных аэромагнитной съёмки в районе Овруцкой впадины разработана методика внедрения статистического моделирова-
ния случайных полей на сфере на основании спектрального розложения для решения проблем кондиционности карт дополнением дан-
ных необходимой детальности. При анализе данных по профилям, их разделено на детерминированную и случайную составляющие. 
Детерминированную составляющую предлагается аппроксимировать кубическими сплайнами, изотропную случайную составляющую 
– моделировать на основе спектрального разложения случайных полей на сфере (модельный пример – данные аеромагнитной съёмки). 
С помощью предложенного алгоритма были получены реализации случайной составляющей в области исследования с удвоенной де-
тальностью по каждому профилю. При проверке их на адекватность сделаны выводы, что соответствующая гистограмма случайной 
составляющей имеет гауссовское распределение. Построенная вариограмма этих реализаций имеет наилучшее приближение теоре-
тической вариограммой, которая соответствует корреляционной функции бесселевого типа. Заключительным этапом роботы было 
наложение массива случайной составляющей на сплайновую аппроксимацию реальных данных. В результате получена более детальная 
реализация для данных геомагнитных наблюдений в выделенной области. Таким образом, метод статистического моделирования ре-
ализаций случайных полей на сфере даёт возможность максимально адекватно дополнить, с заданной детальностью, данными резуль-
таты измерений полного вектора напряжённости магнитного поля. 
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